Regeneración cardíaca utilizando nano y microtecnología

María J. Blanco Prieto

VII Conferencia Anual de las Plataformas Tecnológicas de Investigación Biomédica

Barcelona, 4-5 Marzo 2014

Cardiovascular Diseases (CVD)

- Number one cause of death in the world: 30% of all global deaths
- Nearly half (48%) of all deaths in Europe
- Spain: 31.2% of all deaths

Cardiovascular Diseases, World Health Organization (WHO). Estimates for 2005. Available at http://www.who.int/cardiovascular_diseases British Heart Foundation. Estimates for 2008. Available at http://www.heartstats.org. Instituto Nacional de Estadística (INE). Defunciones según la causa de muerte 2009. Available at http://www.ine.es.

Physiopathological Aspects

Myocardial infarction

Physiopathological Aspects

Cardiac Regeneration

Clinical Trials in Cardiac Diseases

Protein	Route	Trial	n	Outcomes	Study
FGF-1	ІМ	Phase I	20	Capillary density, but no evidence of improved ventricular function	Schumacher <i>et al</i> ., 1998
FGF-2	IC	Phase I	25	Well tolerated dose-escalation trial in subjets with stable angina	Unger <i>et al</i> ., 2000
	IC	Phase I	52	★ Exercise tolerance, ↓ size of ischemic area	Laham <i>et al</i> ., 2000
	IC/ IV	Phase I	59	Perfusion and attenuation of stress-induced ischemia; no control group	Udelson <i>et al</i> ., 2000
	IC	Phase II	337	FIRST study;	Simons <i>et al</i> ., 2002
VEGF	IC	Phase I	14	Perfusion in patients treated with low-dose	Hendel <i>et al</i> ., 2000
	IC	Phase I	15	Well tolerated dose-escalation trial; † myocardial perfusion in half of patients at 60 days	Henry <i>et al</i> ., 2001
	IV	Phase I	28	A Myocardial perfusion and collateral density	Gibson <i>et al</i> ., 1999
	IC/ IV	Phase II	178	VIVA study; safe and well tolerated; no improvements in exercise tolerance and myocardial perfusion	Henry <i>et al</i> ., 2003
NRG-1	IV	Phase I	15	Safe and well tolerated; short-term improvements in cardiac function; no control group	Jabbour <i>et al</i> ., 2010
	IV	Phase II	44	Progressive improvements of cardiac function and anti-remodeling effect in patients with chronic heart failure, but no statistically significance differences	Gao <i>et al.</i> , 2010
EPO	IV	Phase I	44	Evidence of safety and biologic activity of erythropoietin in patients with acute myocardial infarction; increased expression of angiogenesis signaling proteins	Tang <i>et al</i> ., 2009
	IV	Phase II	529	A single high dose of EPO did not improve cardiac function after 6 weeks	Voors <i>et al</i> ., 2010

Clinical Trials in Cardiac Diseases

Clinical Trials in Cardiac Diseases

Lessons from Clinical Trials

- No availability of the protein on myocardium after bolus injection
- Protein therapy requires local administration and continuous exposure of protein

Polymeric Particles

Poly (lactic-co-glycolic acid) - PLGA

0 0 CH3 0 0

PLGA formulations on the market

Drug	Trade name	Company	Polymer	Route	Application			
buserelin acetate	Profact [®] Depot, Suprefact [®] Depot	Hoechst Marion Roussel	PLGA	s/c implant	prostate cancer			
goserelin acetate	Zoladex®Depot	Astra Zeneca	PLGA	s/c implant	prostate cancer, endometrioses			
leupr ace	FDA approved product for drug delivery							
	Trenantone®		PLA	suspension				
octreotide acetate	Sandostatin LAR [®] Depot	Novartis Pharma	PLGA	s/c suspension	GH suppression, anti cancer			
triptorelin	Decapeptyl [®] Depot	Debiopharma	PLGA	s/c depot injection	LHRH agonist, prostate cancer			
recombinant human growth hormone	Nutropin [®] Depot, [discontinued commercialisation since 06/2004]	Genentech- Alkermes	PLGA	monthly s/c injection	growth hormone deficiency			

Growth Factors (VEGF) and Cardiac Repair

Total Recirculation One-Machine System (TROMS)

Lyophilization

Freeze-dried

particles

Formulation $W_1/O/W_2$ emulsion:

W₁: HSA + PEG 400 in PBS

Organic Phase: PLGA in dichloromethane/acetone mixture

Total Recirculation One-Machine System (TROMS)

Lyophilization

Freeze-dried

particles

Formulation $W_1/O/W_2$ emulsion:

W₁: HSA + PEG 400 in PBS

Organic Phase: PLGA in dichloromethane/acetone mixture

Total Recirculation One-Machine System (TROMS)

Lyophilization

Freeze-dried

particles

Formulation $W_1/O/W_2$ emulsion:

W₁: HSA + PEG 400 in PBS

Organic Phase: PLGA in dichloromethane/acetone mixture

Total Recirculation One-Machine System (TROMS)

Lyophilization

Freeze-dried

particles

Formulation $W_1/O/W_2$ emulsion:

W₁: HSA + PEG 400 in PBS

Organic Phase: PLGA in dichloromethane/acetone mixture

In Vitro VEGF Bioactivity

Human Iliac Artery Endothelial Cell line (HIAEC) proliferation assay

In Vivo Biocompatibility of PLGA-Particles

Persistence of 5 µm-sized particles after the intramyocardial injection:

Histological study using Rhodamine-labeled-MP

1 week (Rhodamine, 2.5x)

1 week (DAPI/Rhodamine, 40x)

1 month (DAPI/Rhodamine, 40x)

In Vivo Study: Experimental Design

In Vivo study: Morphometric Analysis

***P<*0.01

Sirius red staining (Left Ventricle, LV)

In Vivo Study: Capillary Density

Caveolin-1: Endothelial cells marker (small capillary vessels)

In Vivo Study: Arteriolar Density

NL-MP

VEGF-MP

VEGF

Smooth muscle alpha actin (SMA): arterioles/arteries marker

In Vivo Study: Vessel Structure

In vivo Study: Vessel Structure

3D confocal images after immunofluorescence caveolin staining

Growth Factors

Cardiomyocyte Proliferation Assay

HL-1 cardiomyocytes Proliferation

*P<0.05, **P<0.01, ***P<0.001 vs. control

FGF-1 and NRG-1 induce adult cardiomyocyte proliferation in vitro

Cardioprotection Assays

Hypoxia-induced Apoptosis (ELISA detection of histone-associated DNA fragmentation)

Caspase 3/7 activity

FGF-1/NRG-1 combined treatment decreases cardiomyocyte apoptosis in vitro

Bioactivity of FGF-1/NRG-1 Released from MP

HL-1 cardiomyocytes Proliferation

In vivo characterization of MP: engraftment

Design of *in vivo* studies

Functional Results: Cardiac Function

^{*}P<0.05 vs. NL-MP (control)

Functional Results: Infarct Size

**P<0.01 vs. NL-MP (control)

Sirius red staining (Left Ventricle, LV)

Functional Results: Fibrosis

P*<0.01 and *P*<0.001 *vs.* NL-MP (control)

Sirius red staining

Vascular Density and Area

Recruitment c-kit⁺ progenitor cells

Recruitment c-kit⁺ progenitor cells

NL-MP

NRG1-MP

1 week cKit+ CD45- /mm² 5 *** 4

Cardiomyocyte Proliferation

Cardiomyocyte Proliferation

NL-MP

3 months

NRG1-MP

Preclinical Model

Preclinical Model

Injection

Follow up

Preclinical Model

Summary

Acknowledgments

