

MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española

IX Conferencia Anual de las Plataformas Tecnológicas de Investigación Biomédica

Nuevos Retos en Investigación Biomédica

asebio

farmaindustria

PLATAFORMA

ESPAÑOLAINNOVACIÓN

TECNOLOGIA SANITARIA

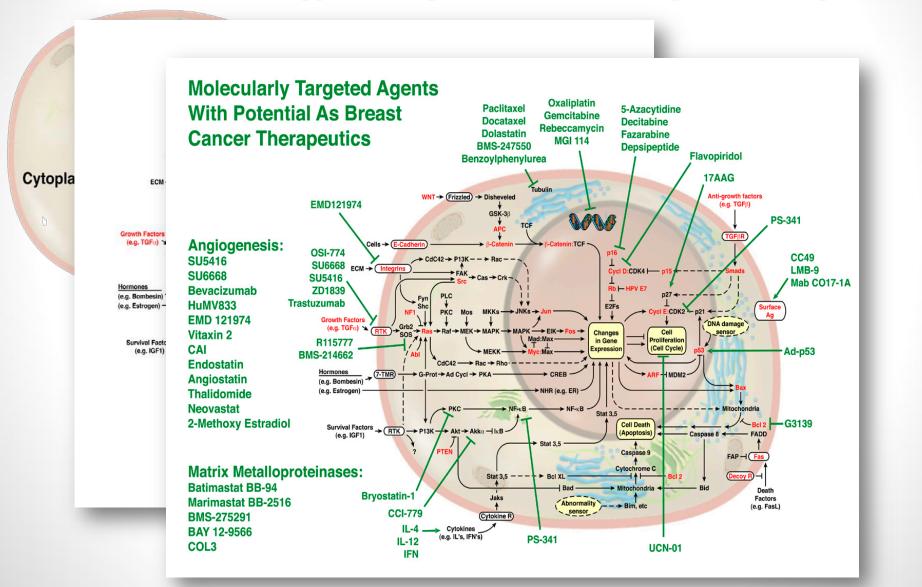
Las plataformas de Medicamentos Innovadores, Nanomedicina, Tecnología Sanitaria y Mercados Biotecnológicos cuentan con apoyo financiero del Ministerio de Economía y Competitividad

IX Conferencia Anual de las Plataformas Tecnológicas

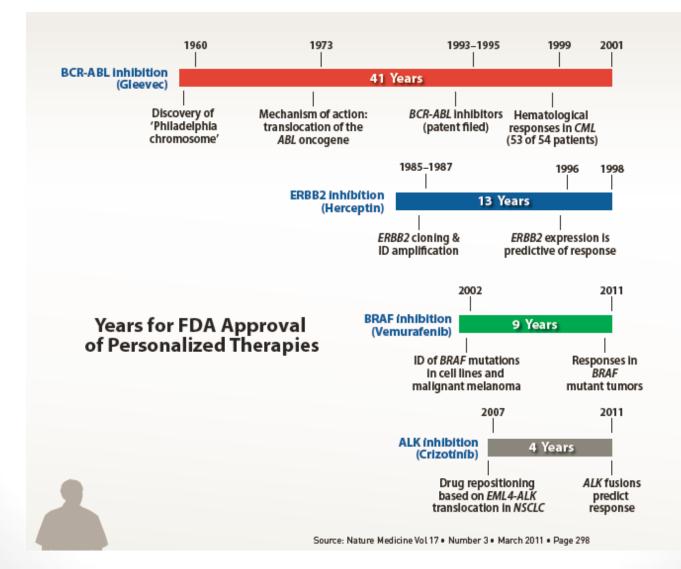
Nuevos retos en la Investigación en Oncología

Jordi Rodón

Unitat d'Investigació en Teràpia Molecular del Càncer (UITM) Vall d' Hebron Institut d'Oncologia (VHIO), Barcelona (Spain)

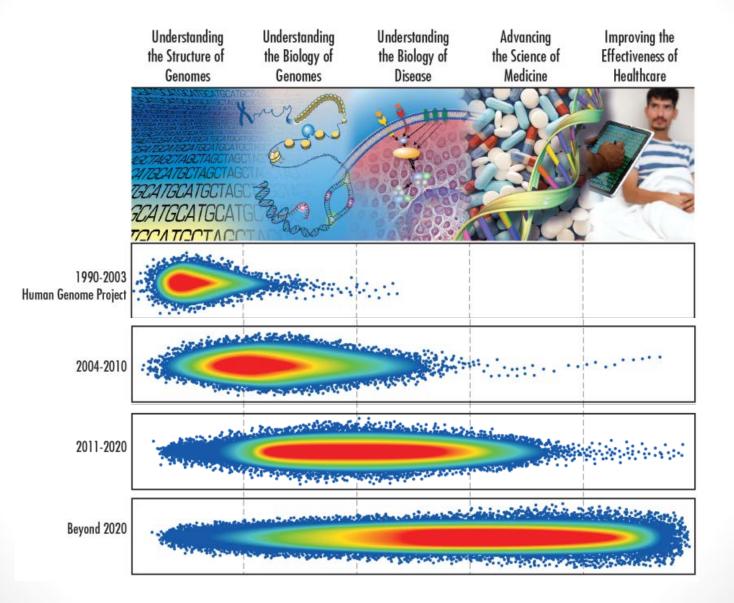


Where are we now?


From biology to target and from target to drug

Target Discovery to Drug approval

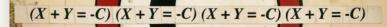
ESTIMATED INCIDENCE AND MORTALITY FOR SELECT CANCERS


	ESTIMATED 2015 INCIDENCE Total Male Female		ESTIMATED 2019 Total Male		5 DEATHS Female	
ALL SITES 1	1,658,370	848,200	810,170	589,430	312,150	277,280
HEAD AND NECK REGION						
Brain & other nervous system	22,850	12,900	9,950	15,320	8,940	6,380
Oral cavity & pharynx	45,780	32,670	13,110	8,650	6,010	2,640
Tongue	14,320	10,310	4,010	2,190	1,500	690
Mouth	12,920	7,750	5,170	2,120	1,200	920
Pharynx	15,520	12,380	3,140	2,660	2,010	650
Larynx	13.560	10,720	2,840	3.640	2,890	750
Lung & bronchus	221,200	115,610	105,590	158,040	86,380	71,660
Breast	234,190	2,350	231,840	40,730	440	40,290
GASTROINTESTINAL SYSTEM						
Esophagus	16,980	13,570	3,410	15,590	12,600	2,990
Stomach	24,590	15,540	9,050	10,720	6,500	4,220
Liver & intrahepatic bile duct	35,660	25,510	10,150	24,550	17,030	7,520
Gallbladder & other biliary	10.910	4,990	5,920	3.700	1,660	2,040
Pancreas	48,960	24,840	24,120	40,560	20,710	19,850
Small intestine	9,410	4,960	4,450	1,260	670	590
Colon and rectum ⁺	93,090	45,890	47,200	49,700	26,100	23,600
UROGENITAL SYSTEM						
Kidney & renal pelvis	61560	38,270	23,290	14.080	9,070	5,010
Ovary	21,290		21,290	14,180		14,180
Uterine corpus	54,870		54,870	10,170		10,170
Uterine cervix	12,900		12,900	4,100		4,100
Urinary bladder	74,000	56,320	17,680	16,000	11,510	4,490
Prostate	220,800	220,800		27,540	27,540	
Testis	8,430	8,430		380	380	
SKIN						
Skin (excluding basal & squamous	5) 80,100	46,610	33,490	13,340	9,120	4,220
Melanoma	73,870	42,670	31,200	9,940	6,640	3,300
HEMATOLOGICAL SYSTEM						
Leukemia	54,270	30,900	23,370	24,450	14,210	10,240
Acute lymphocytic leukemia	6,250	3,100	3,150	1,450	800	650
Chronic lymphocytic leukemia	14,620	8,140	6,480	4,650	2,830	1,820
Acute myeloid leukemia	20,830	12,730	8,100	10,460	6,110	4,350
Chronic myeloid leukemia	6,660	3,530	3,130	1,140	590	550
Lymphoma	80,900	44,950	35,950	20,940	12,140	8,800
Hodgkin lymphoma	9,050	5,100	3,950	1,150	660	490
Non-Hodgkin lymphoma	71,850	39,850	32,000	19,790	11,480	8,310
Myeloma	26,850	14,090	12,760	11,240	6,240	5,000
OTHER CANCERS						
Bones & joints	2,970	1,640	1,330	1,490	850	640
Soft tissue (including heart)	11,930	6,610	5,320	4,870	2,600	2,270

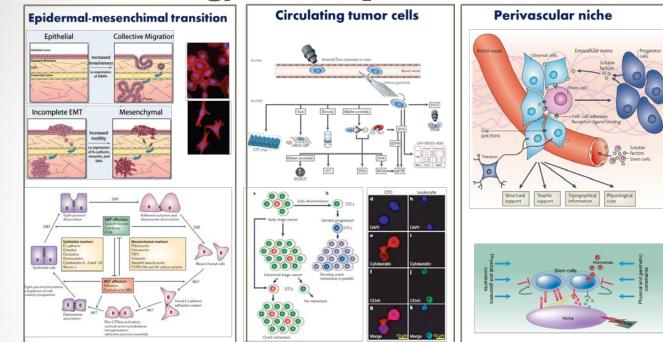
- CANCER IS THE WORLD'S BIGGEST KILLER -(Figures for 2011 / Deaths in million) Preterm birth complications 1.17 Diabetes mellitus Road 1.39 injury 1.59 2,97 COPD HIV/AIDS 1,89 Diamhoeal diseases 3,2 7,02 6,25 Lower respire infections Heart disease 7,87 Stroke Cancer

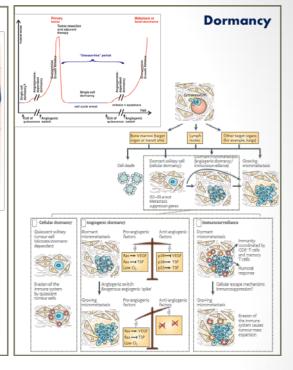
And yet...

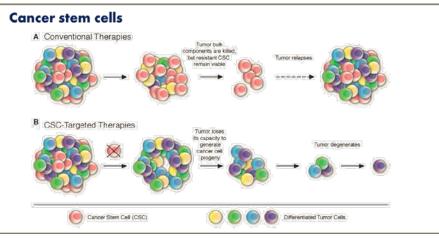

Where are we now?


Understanding the disease

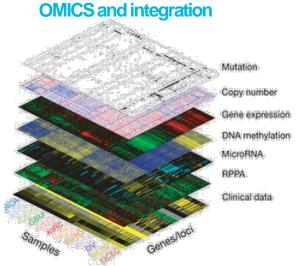
Cancer and society

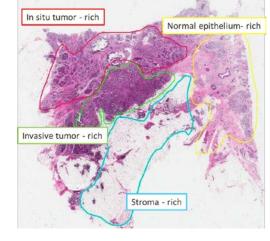

Newsweek Solving Cancer You can't cure what you Don't understand


New research models

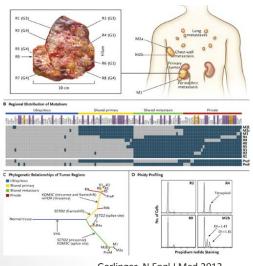


The conundrum: The biology is complex...

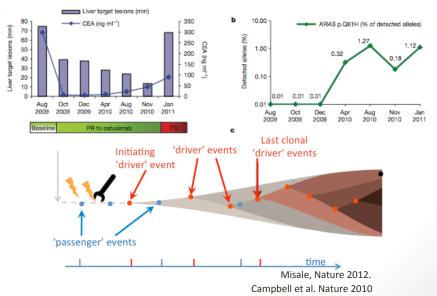


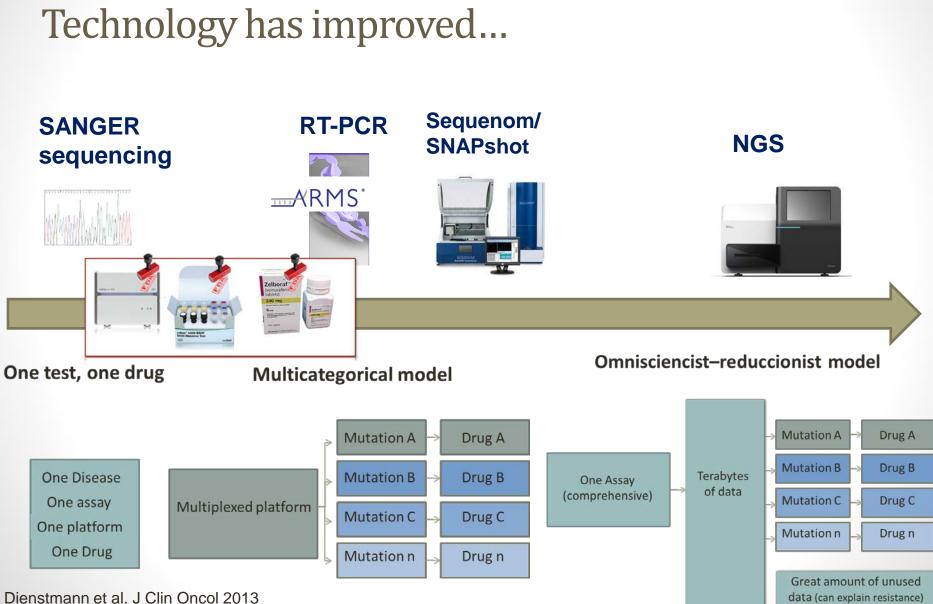

The conundrum: The biology is complex...

Driver vs passenger


Intra-tumor cellular heterogeneicity

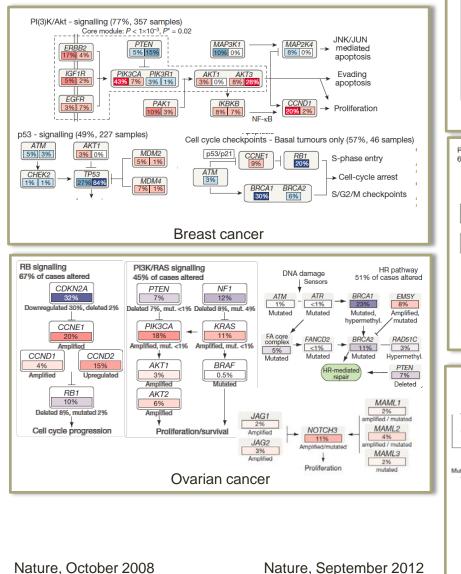
Allele frequency

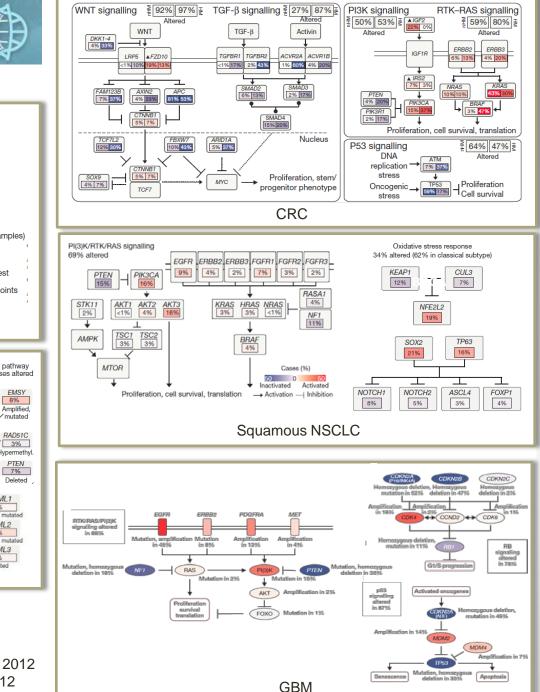

Functional relevance


Intra-patient tumor heterogeneity

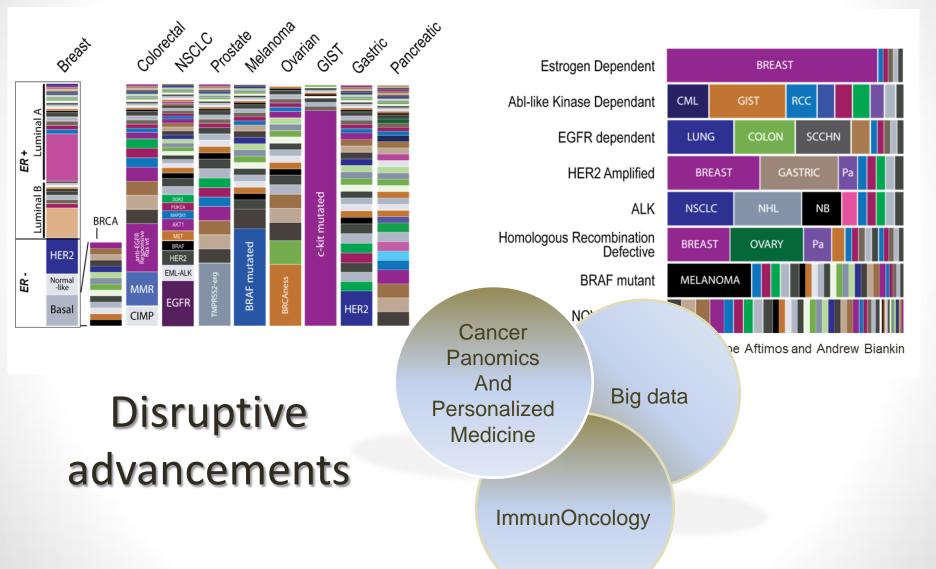
Gerlinger, N Engl J Med 2012

Temporal tumor heterogeneity and Clonal evolution



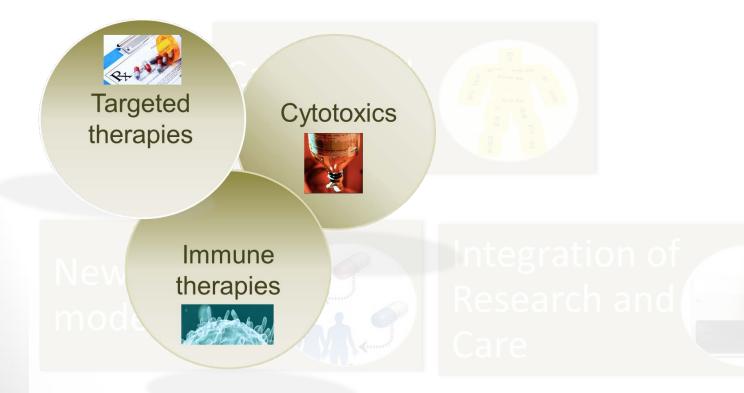


The conundrum: The biology is complex... Technology has improved..


The Cancer Genome Atlas 🕀

Nature, June 2011 Nature, July 2012 Nature, September 2012 Nature, October 2012

The revolution in cancer Disease reclassification?

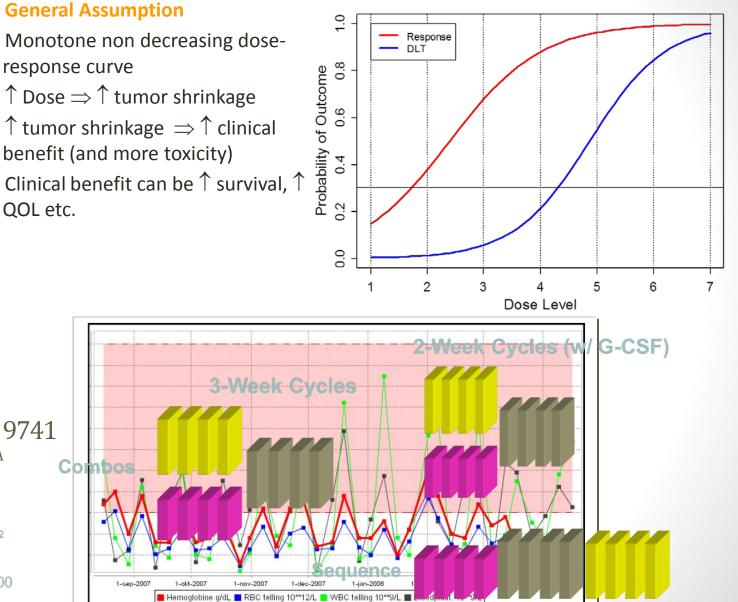


Understanding the disease

Therapeutic Paradigms

2010

1940


Classical Goals:

-Identify Dose Limiting toxicities (CTCAE v.1 to 4.03)
-PK and PD data
-RECIST v.1.1 criteria

Cyclophosphamide (C) 600 mg/m²

CYTOTOXICS

ted

EMOTHERAP

TARGETED AGENTS

IMMUNOTHERAPIES

Timeline in Early Drug Development		1990	2010
	FIRST PARADIGM	SECOND PARADIGM	THIRD PARADIGM
OBJECTIVES	CLASSICAL APPROACH	MODIFICATIONS	NEW CHALLENGES
Dose recommendation	 DLT/MTD definition based on dose- response relationship RP2D establishment 	 No clear correlation between dose- response Need for a BED correlation, proof-of- mechanism based on PK/PD data 	 Less clear dose-response relationship, DLTs/MTD not always reached Proof-of-mechanism measures not well defined yet
Pharmacokinetic & Pharmacodynamic data	 Helps in dosage and schedule definition Exploratory 	 PD biomarkers of efficacy Mandatory for BED finding and dose recommendation 	 Need for integrating validated measures of immune modulation (immune- biomarkers)
Response evaluation	RECIST v.1.1WHO criteria	mRECISTChoi criteria	 irRC criteria (1D) New irRECIST criteria (2D)
Toxicity assessment	CTCAE v.4.03Relevant acute toxicities	 Need for a revised CTCAE version in light of new emergent toxicities Incorporation of chronic toxicities 	 Need for a new irAEs grading system Relevant acute, subacute and chronic toxicities
Candidate populations	 Only heavily pre-treated patients with no standard treatment options 	 New patient populations: molecularly selected populations, window-of- opportunity, phase 0 and healthy volunteer studies 	 New subgroups of patients who could early benefit from immunotherapy: progressive melanoma after ipilimumab or BRAF inhibitor, progressive SqNSCLC after platinum

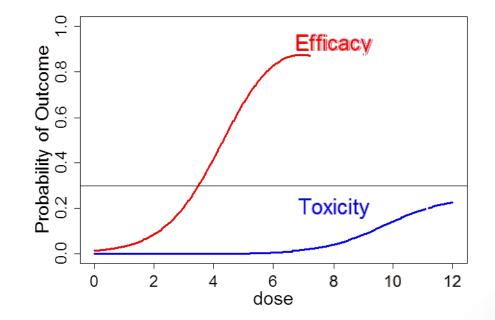
2010

1990

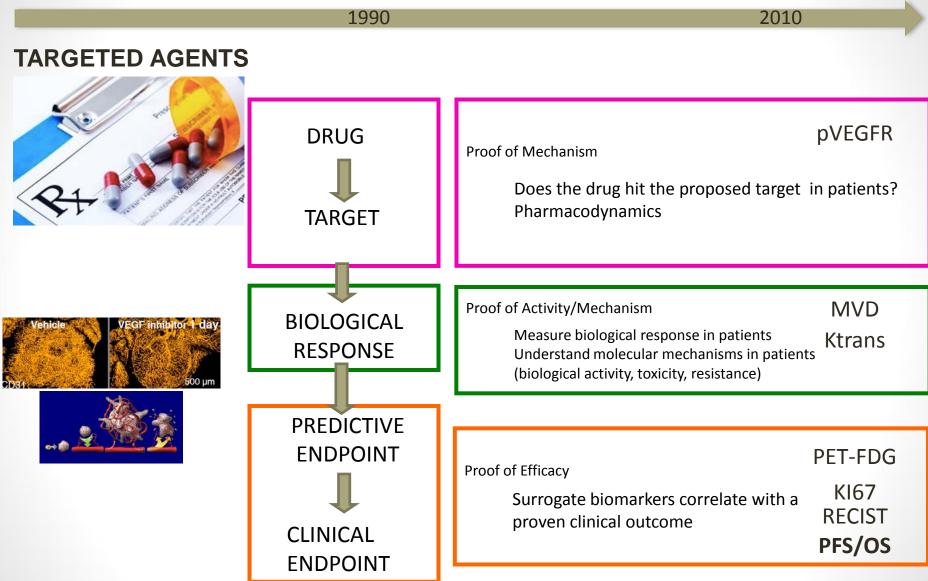
TARGETED AGENTS

General Assumption

Not all targeted therapies have toxicity

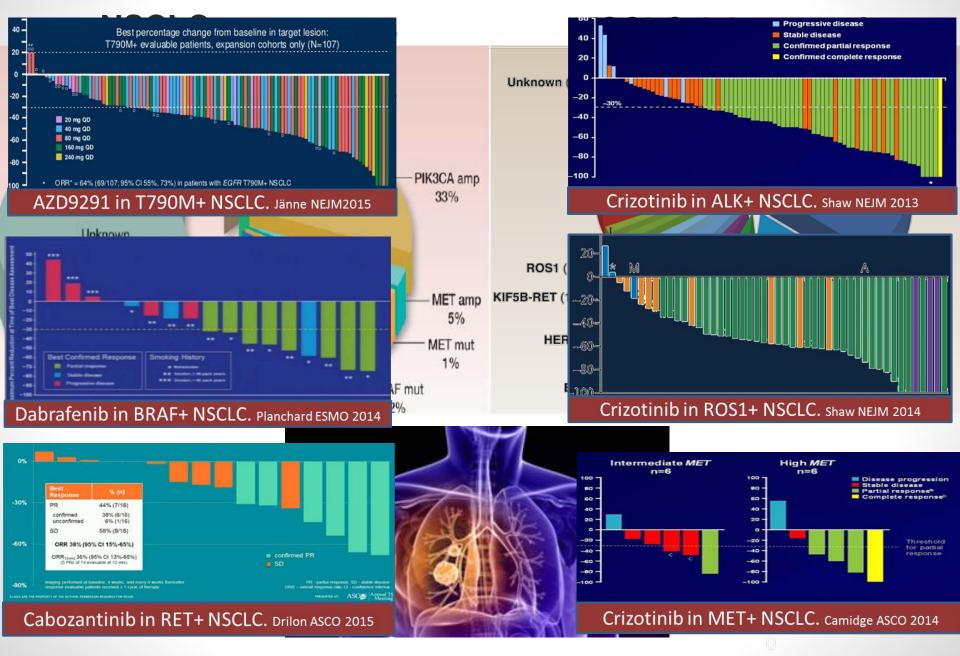

- Toxicity may not occur at all
- Toxicity may not increase with dose

Previous assumption may not hold: does efficacy increase with dose? MTD may not be the goal of Phase I since specificity of effect may be lost at MTD


Pharmacologic effect may not equal biologic effect

Goal: identify optimal biologically effective dose (OBED)

Rule of "No response in Phase I = inactive drug" shouldn't apply



Enabling Stratified Medicine in NSCLC

2010

1990

Molecularly Informed clinical trials

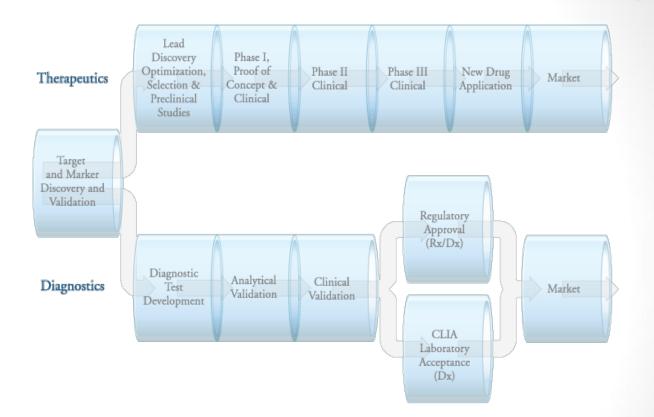
Successful stories of targeted therapies

FDA guidance on co-development of diagnostics

Table 1. Response rate of successful targeted therapies in molecularly-selected populations evaluated in early clinical trials

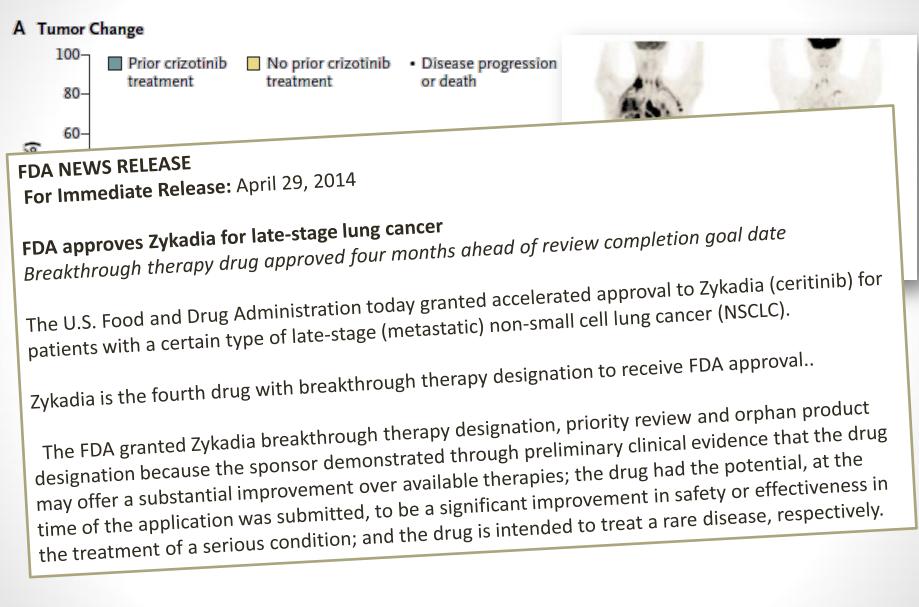
Marker/population	Agent	Mechanism of action	Response	Reference
HER2 overexpressed/amplified breast cancer	Trastuzumab	anti-HER2 antibody	12%	[6]
	Trastuzumab-DM1	anti-HER2 antibody + drug conjugate	44%	[12]
CD117 overexpressed GIST	Imatinib	c-KIT, PDGFR inhibitor	54%	[13]
BRCA 1/2 mutant breast, ovarian and prostate cancer	Olaparib	PARP inhibitor	47%	[7]
BRAF V600E mutant melanoma	Vemurafenib	BRAF inhibitor	75%	[8]
	Dabrafenib	BRAF inhibitor	60%	[14]
Basal cell carcinomas (majority have inactivating mutations in PTCH1 or activation of SMO)	Vismodegib	SMO inhibitor (Hh pathway)	58%	[15]
ALK rearranged NSCLC	Crizotinib	ALK, MET inhibitor	57%	[9]
Medullary thyroid cancer (known to have <i>RET</i> mutations, MET expression and VEGF activation)	Cabozantinib	MET, VEGFR2, RET inhibitor	29%	[16]
PIK3CA mutant breast cancer	BYL719	selective PI3K alpha inhibitor	44%°	[10]
FGFR1 or FGF amplified breast cancer	E-3810	FGFR, VEGFR inhibitor	70%	[11]

2010


1990

TARGETED AGENTS

Pharmacologic effect may not equal biologic effect Goal: identify optimal biologically effective dose (OBED)


Rule of "No response in Phase I = inactive drug" shouldn't apply

- Safer drugs, role of chronic toxicities
- Proof-of-Mechanism (PD biomarkers)
- mRECIST and Choi criteria
- New toxicities not graded in CTCAE
- Changes in candidate **populations**

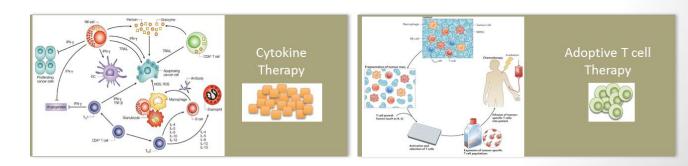
Ceritinib in ALK-Rearranged NSCLC

2010

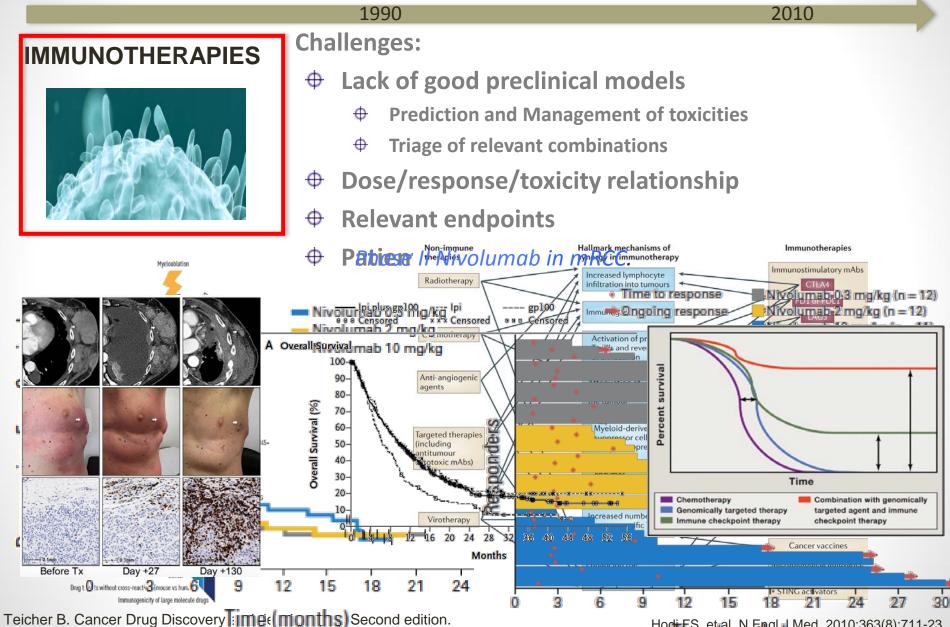
1990

IMMUNOTHERAPIES


And now:


The Third Paradigm The rationale:

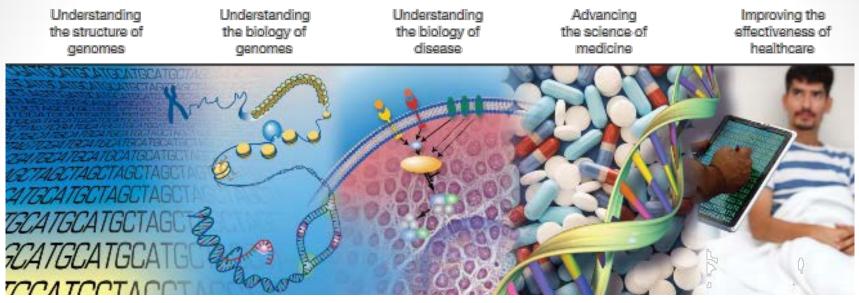
✓ Potentially Highly Tumor-Specific


✓ Can be Effective Against Disseminated Disease Including Unrecognized Micro-metastases

✓ Can Involve Severe, Sudden Onset Life-threatening Treatment-limiting Side-Reaction

DranofeGPet et.aNataRev 20014,1916(20208):500072;12(1):61-6. Motzer RJ. et al. J Clin Oncol 2014 Dec 1

Hod FS. et al. N Engl J Med 2010;363(8);711-23. 1 Her Chon Sharma P, Allison JP: Cell 2015


New research models

Integration of Research and Care

Path Toward Personalized Medicine

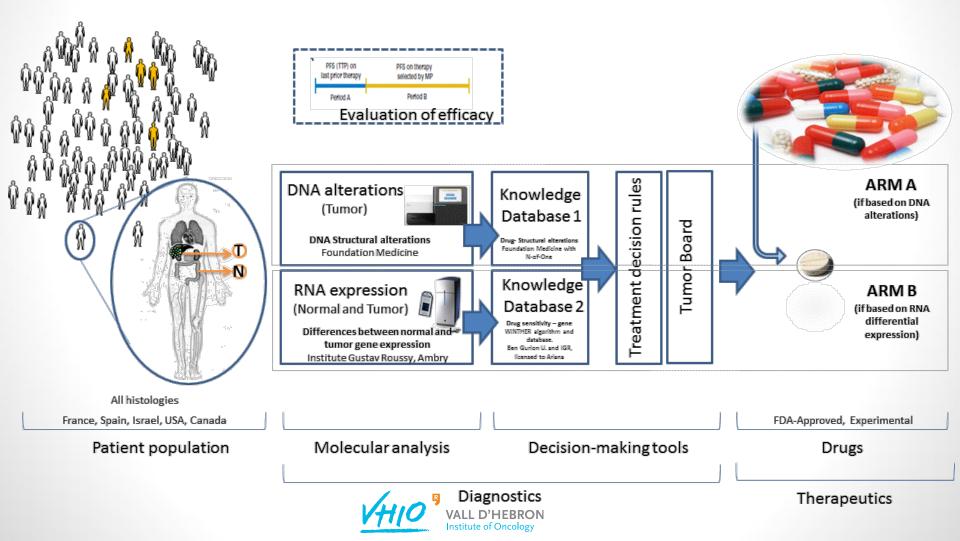
Green, ED et al (2011). Charting a course for genomic medicine from base pairs to bedside. Nature 470: 204-213

Change in personalized healthcare investment from 2005 to 2010 ¹

75%

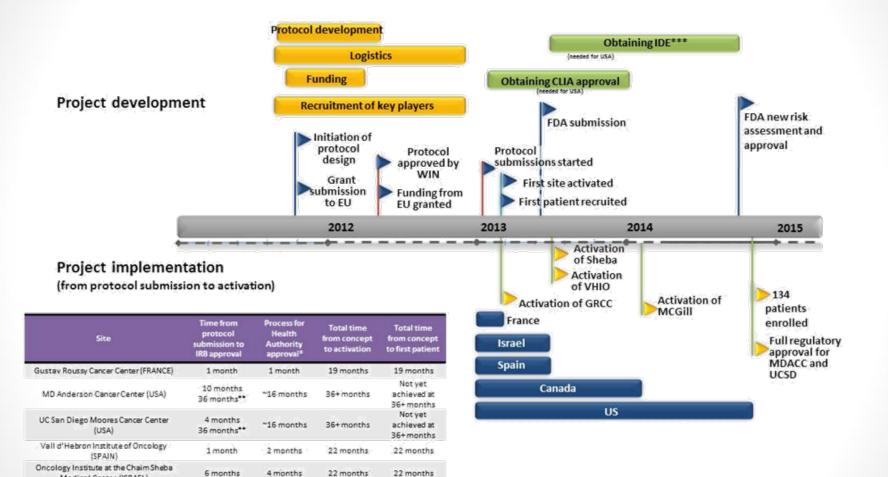
Biopharmaceutical companies investing in personalized healthcare research in 2010¹

94%


Prominent personalized medicine treatments & diagnostics available ²

13 113 in 2006 in 2014

¹ Tufts Center for the Study of Drug Development, 2010; ² Personalized Medicine Coalition, 2014


Personalized Medicine: Winther trial VALL D'HEBRON Institute of Oncology

 International, pilot study in Personalized therapy: includes a variety of different technologies (Next Generation Sequencing, Copy Number Variations, gene expression). 5 Countries. Academia, Pharma, Dx Companies, and NGO and Charities. Supported by WIN consortium, ASCO and EU.

Site	Principal Investigator	Challenge	Solution		
Gustave-Roussy Cancer Campus (FRANCE)	Prof. JC. Soria, Chair of the Drug Development Department (DITEP) (Study PI)	 Classified as triage trial. Approved drugs could be used off label after multidisciplinary tumor board discussion, and with permission by the health authorities. 	 Multiple clinical trials for patients. Charities, pharmaceutical, and institutional funding. Request coverage by health insurance on a case-by-case basis. Encourage pharmaceutical industry to provide free drug if under IRB-approved protocol (perhaps similar to pharmacy assistance program) 		
UC San Diego Moores Cancer Center (USA)	Prof. Razelle Kurzrock, Senior Deputy Center Director, Clinical Science and Director, Center for Personalized Cancer Therapy	 Classified as triage trial Approved drugs could to be used off label. Non-government (private) health insurance may cover, albeit unpredictably Diagnostic "omics" tools need to be CLIA-approved and FDA initially ruled them a "significant risk" and requested an IDE; initial IDE package rejected by the FDA. Reassessment by FDA with protocol modification in the 	 CLIA lab had to be included and results cross-validated with those from GRCC lab in France. Need for IDE was an unexpected new requirement and a package had to be prepared for obtaining it. Timeline for package preparation was significant 		
 Authorities that includes the diagnostic and therapeutic part Need to define drugs that will be used in clinical trial Drugs need to be covered by the clinical trial 			o introduce pharmacovigilance (reporting events). chensive list of drugs available ls on clinical trial funding for the cost of drugs.		
(USA)	Therapeutics,				
Vall d'Hebron Institute of Oncology (SPAIN)	Jordi Rodon, MD, Director of the Molecular Therapies Research Unit	 Classified as a therapeutic clinical trial per Health Authorities that includes the diagnostic and therapeutic part Need to define drugs that will be used in clinical trial Drugs need to be covered by the clinical trial 	 Need to introduce pharmacovigilance (reporting adverse events). Comprehensive list of drugs available Depends on clinical trial funding for the cost of drugs. 		
Oncology Institute at the Chaim Sheba Medical Center (ISRAEL)	Raanan Berger, MD, PhD, Director, Division of Medical Oncology	 Classified as a therapeutic clinical trial per Health Authorities Drug costs need to be covered by the clinical trial Cost of clinical research higher than what is covered 	 Clinical trial includes the diagnostic and therapeutic part. Depends on clinical trial funding for the cost of drugs. Extra resources need to be allocated by the site 		
Segal Cancer Center, McGill University (CANADA)	Prof. Wilson Miller, Deputy Director of Segal Cancer Centre & director of the Clinical Research Units, McGill University	 IRB and Health Authorities had different views regarding the regulatory approach for the study. Classified as a therapeutic trial. Site needs to request Health Authority permission for off-label drug use in each case. Site not included in the initial grant 	 Coordination between Health Authorities and IRB by the site. Local pharmaceutical affiliates may provide drug for patients. Development of an ad-hoc fast-track review system by Health Authorities for this project. Site added in the grant and recources reallocated 		

Personalized Medicine: Winther trial

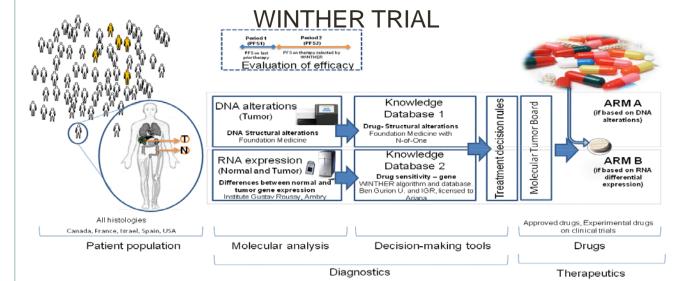
Medical Center (ISRAEL) Segal Cancer Center, McGill University

(Canada)

1 month

9 months

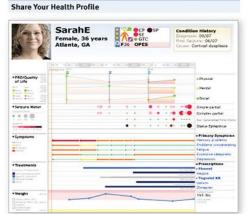
30 months


30months

VALL D'HEBRON Institute of Oncology

Personalized Medicine:

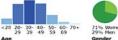
VALL D'HEBRON Institute of Oncology


How to measure clinical benefit" Clinical Trials in Personalized Cancer medicine

Genomic case reports

Case registries

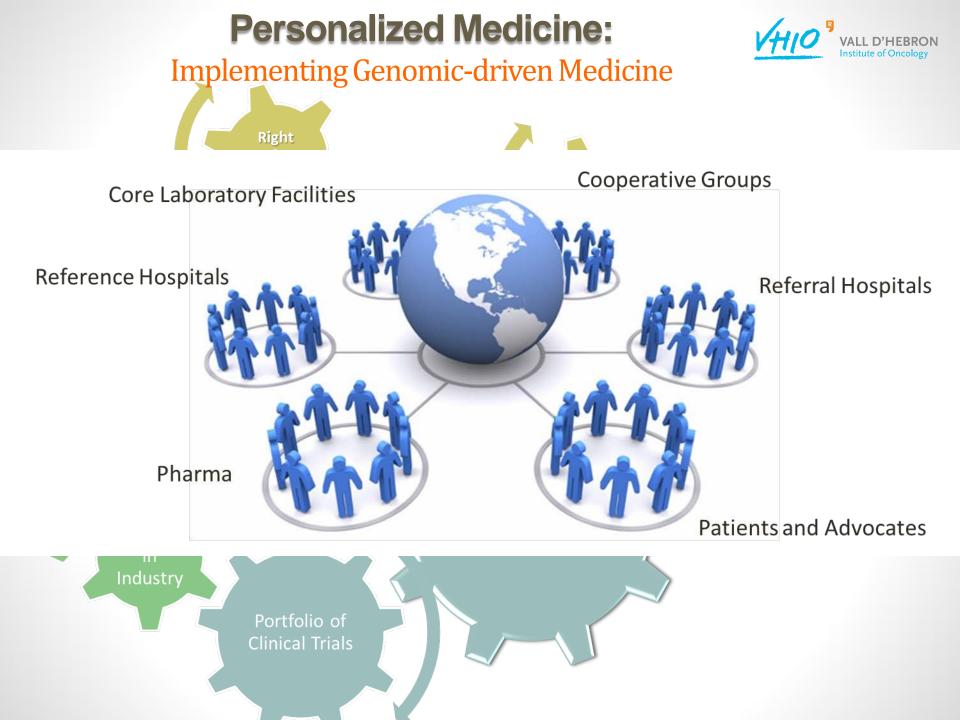
nature Annals "Oncology" The NEW ENGLAND JOURNAL of MEDICINE



patientslikeme[.]

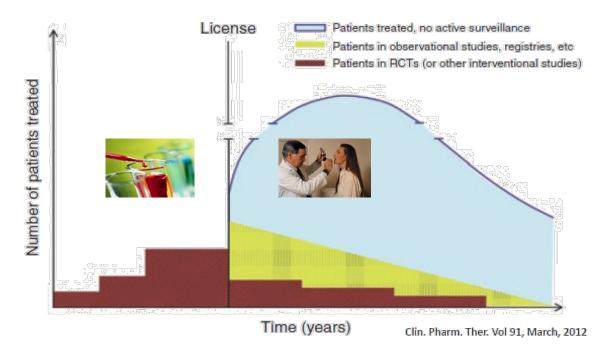
Find Patients Like You

symptoms, gender and age to more easily connect with patients like you.



The issues that are most important to our patients:

Learn From Real World Patient Experiences

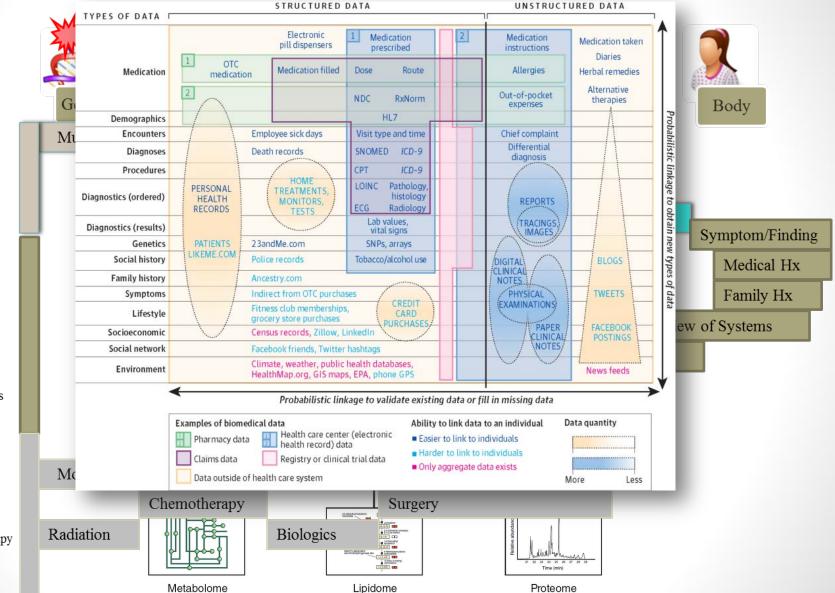


"Big Data" in Oncology

 We've lived in a world where research was in one side of the house and clinical care was on the other

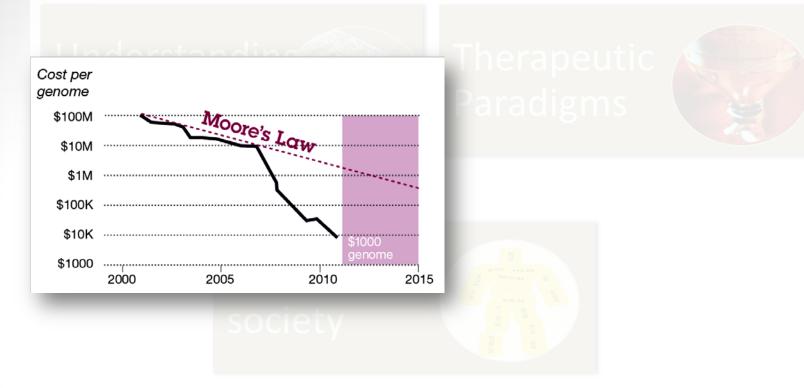
- But we can also aggregate data from our routine clinical care and gain valuable insights from massive numbers of patients
- In the future, most new knowledge creation in oncology will come from the analysis of "real world data"
- We will need to create a true "learning health system" for cancer care.

"Big Data" in Oncology Cancer Workflow: Research and Patient-Care



- Diagnosis

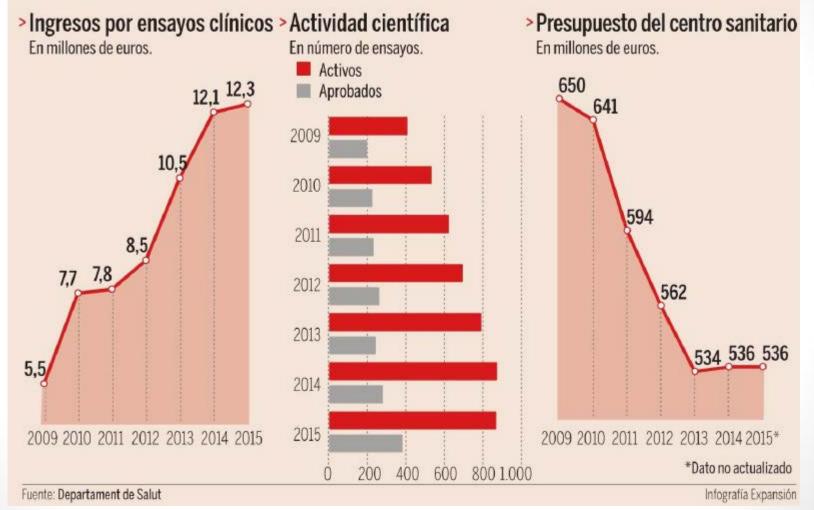
- Personalize Therapy
- Apply Treatment Guidelines



Nature Immunology 2015;16,902-5.

Finding the Missing Link for Big Biomedical Data. JAMA. 2014;311(24):2479-2480.

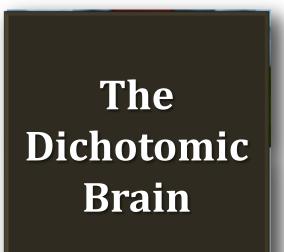
Institute of Oncolog



New research models

Integration of Research and Care

EVOLUCIÓN DE LOS ENSAYOS CLÍNICOS EN VALL D'HEBRON



The conundrum:

The biology is complex... Technology has improved...

...but the physician's brain is still dichotomic

MUTANT or WILD TYPE INCLUDED or EXCLUDED RESPONDER or NOT RESPONDER DRUG A or DRUG B

Modern times: NGS as the high-density multiplexing platform

VALL D'HEBRON

2 11 🚍

8

CLINICAL PRACTICE

Amplicon-sec		8	9 10	11 12 1 I I	13 15 16 	17 19 2 18 20	21 22
Capture		1					
approaches	Specific regions are multiplex-PCR amplified and sequenced.	8	ABL1	AKT1	AKT2	ALK	A
Exome-seq	Customized pannels (p.e 350 regions in 70 genes) Up to 2.5 Mb (200k probes) are sequencing- ready in 1 working day. Allows good intron- exon coverage. Allows panels containing 400 cancer genes. Aprox. 34-50 Mb. Allows mutation detection as well as copy number calling. Expensive, needs time for bioinformatics		BRAF	CDH1	CDK4	CDKN2A	CS
		8	CTNNB1	Dear1	EGFR	ERa	ER
			FBXW7	FGFR1	FGFR2	FGFR3	FL
			FRAP	GATA1	GNA11	GNAQ	GN
		•	GSK3B	HIF1A	HRAS	IDH1	ID
			IGF1R	JAK1	JAK2	JAK3	К
Whole			KRAS	MAG	MAP2K4	MEK1	M
genome		8	MLH1	MPL	MSH6	MYC	N
sequencing			NF3	NOTCH1	NOTCH4	NRAS	PDC
			PIK3CA	PIK3R1	PIK3R5	PRKAG1	PRK

RUNX1

STK11

SMAD4

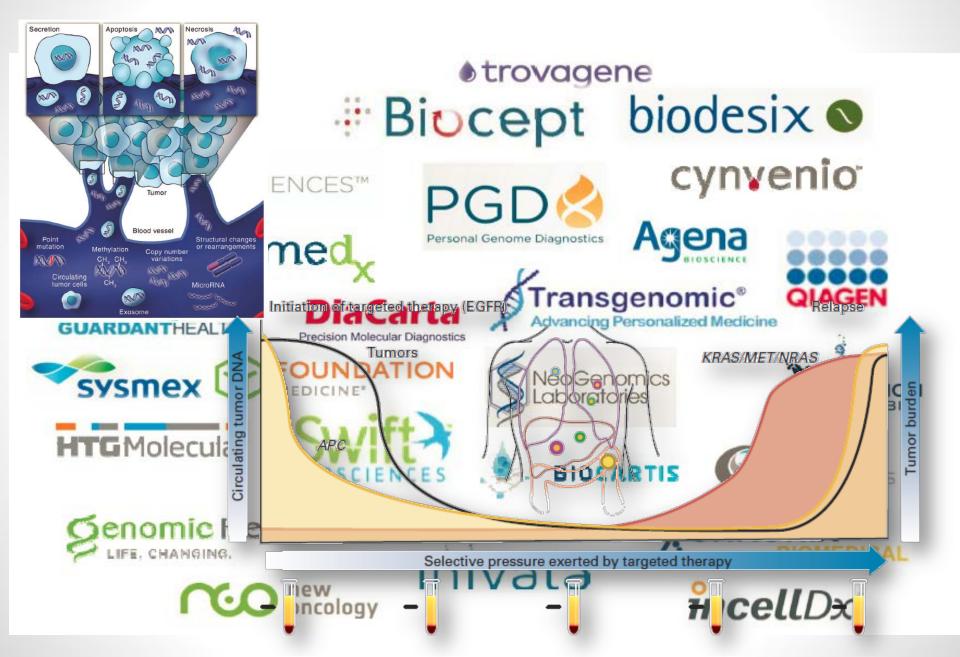
TNK2

SMARCB1

TP53

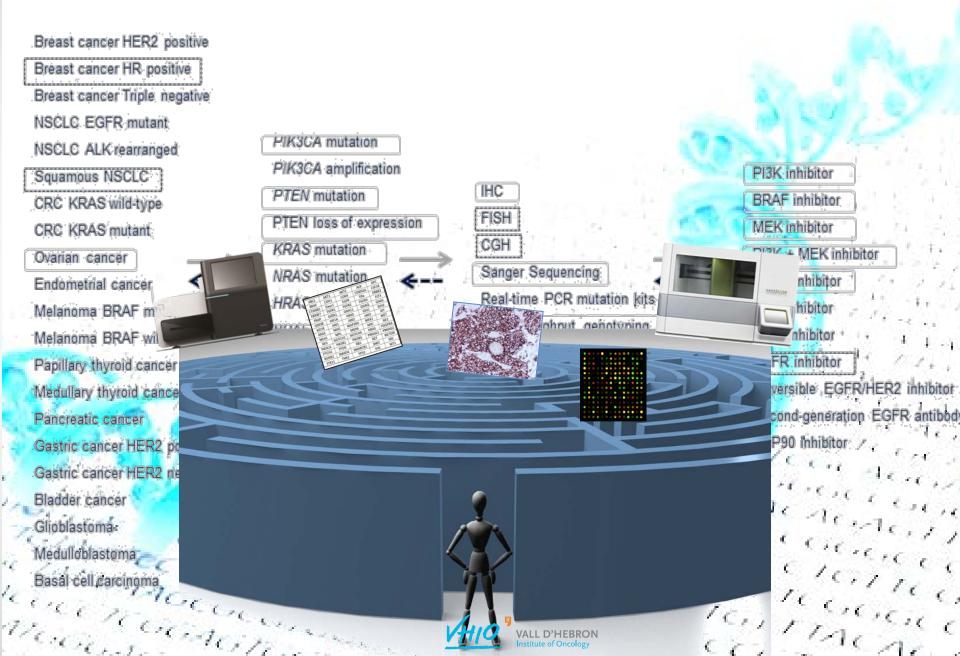
SMO

VHL


SRC

WT1

RESEARCH


Liquid biopsies: genotyping Circulating tumor DNA

Molecular prescreening initiavies: matching alteration and drug

Understanding the disease

Therapeutic Paradigms

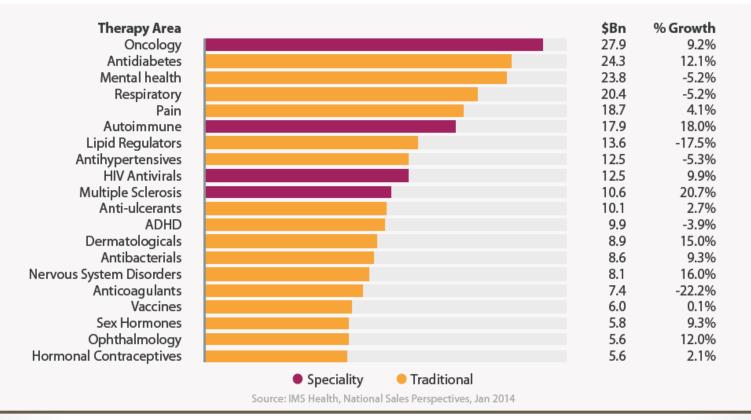
New research models

Integration of Research and Care

Social expectations

<u>AUNUL î</u>

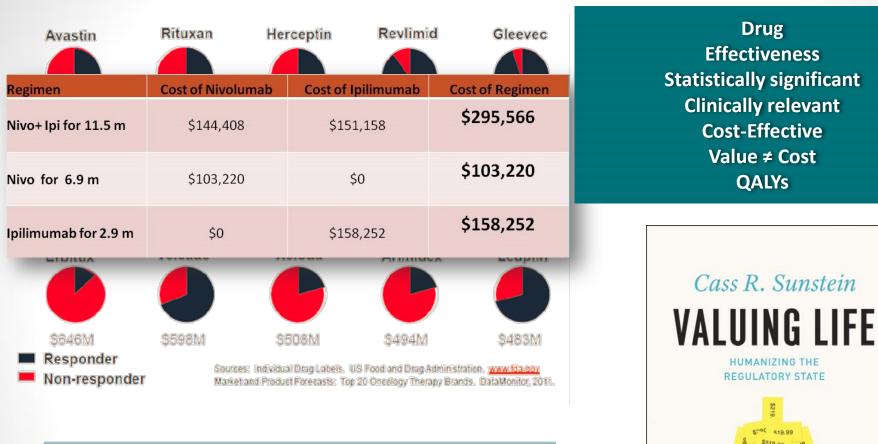
New Social Chains to Administ Change In County Testing Program (Terrary Unifer In These Own Worth Garanty Testing Company Standible Social Salary: A York Prior the Institut (News Council)


Social expectations

Spending on Medicines in Leading Therapy Areas

Over one-third of spending is concentrated in the top 5 therapies

Spending in leading therapy areas



http://www.imshealth.com/portal/site/imshealth. Accessed May 2014.

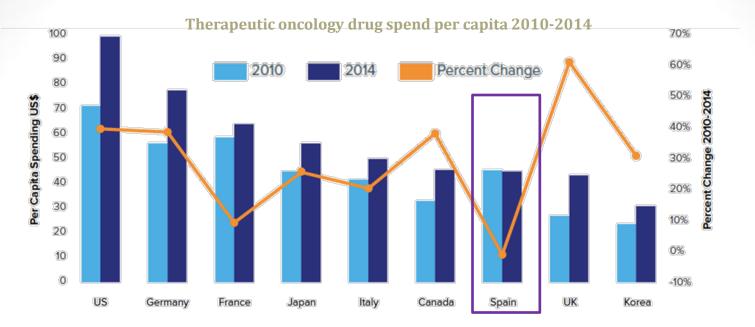
Cost and Value

\$19.99

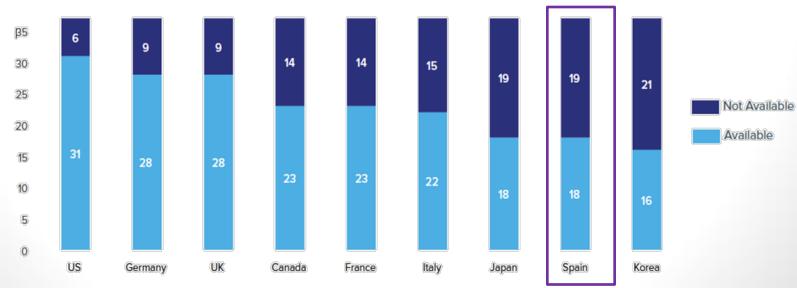
The QALY is just a well researched number. The value of a life is far more complex question

Many people are cheering a new potential solution: paying for drugs according to how well they actually work.

Cost and Value


Comparison of Major Value-Based Frameworks

Framework Comparison		ASCO Framework	Sloan Kettering "DrugAbacus"	NCCN* Value Tool	Quintiles Value Framework
Inputs	Clinical Benefit	х	х	х	х
	Toxicity / Safety	х	х	х	х
	Price	х	х	х	х
	Quality / Consistency of Data		х	х	х
	Novelty		х		х
	Rarity of Disease		х		х
	Population		х		х
	Treatment Duration		х		х
	Cost of Drug Development		х		
Outputs	Net Health Benefit	х			
	Cost vs. Benefit		х	х	х
	Recommended Price		х		х
Limitations	Not Comparable Across Landscape	х			
	Currently Available	Preliminary Draft	х		х
	Designed for Use by Singular Patient	х	х	х	
Methods	Adjustable Weighting		х		х
	Complex, Customized Formula		х		х


Vikas Chawla1, Craig White1,2, John Doyle1 (1Quintiles Advisory Services, New York, NY, USA; 2PhD Program in Health Policy, Harvard Graduate School of Arts and Sciences, Cambridge, MA

Financial turmoil

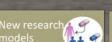
Global New Molecular Entities 2009-2013 (Availability as of 2014)

Source: IMS Health MIDAS, Dec 2014; The World Bank, 2015

Political turmoil

Science Molecular Oncology. Immunology.

Technology Genomics, Big data


Trials Acknowledge that all cancers will be rare diseases; New clinical trial models; New infrastructure and regulatory models

Teamwork

Public-Private, Biobanking, Regulators and Public opinion. Investment. Integration of Research in Health Care

