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Stratification of Sepsis in EDs =Carle
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Rashid Bashir ~ Bobby Reddy

A Team Approach

Translation

Novel Devices

% High Frequency testing
% Nonclinical lab testing
(outpatient, physician offices,
nursing homes, homes,
pharmacies, etc.)

e

Enrique Valera

Umer Hassan

PoC
Devices

- ") Evaluate device performance
=) Physicians feedback

- ~{)Data generation (high
y frequency time-series)

Predictive

Analytics

Dave Zhao Ruoqing Zhu

£ Precision Medicine

£ Predict adverse events before onset
{yPatient Stratification (disease states)
{»Target specifications for PoC devices

Biostatistics for
Machine Learning

Biostatistics
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Ongoing Sepsis Biomarker Study (900 samples and counting)

SAMPLES TAKEN FROM PATIENTS FOR WHICH A BLOOD CULTURE HAS BEEN ORDERED

Precision Medicine + Critical Care

Training Data i i
Predictive Analytics Algorithm m Point of Care Device
. The Senses
The Brain ’ PO

y AN * Diagnose: Collect information of
"?@"\ ): @ critical value
training data "

. . * Observe: Collect information of
¢ Predict: Refine the model { ) .
unknown but promising value

* Validate: Test the model Adjust: Focus on different

* !crr‘asitr:;mdz(i:(ff:::xc:riierg;\éint Feedback for information and adjust frequency
g Next Iteration of information as per feedback

* Learn: Add to database using

Pro-lnflamn:‘altorv Others Anti-Inflammatory Clinical Information

* Neutrophil CD64 * PCT *  Monocyte HLA-DR . . . .

. IL6 P . NGAL i 4 Every single vital measurement throughout entire hospital stay
« TNF-a ¢ Il-la * All clinical diagnoses including time of diagnosis

© 1B * IP-10 * All CBC results, BMP results, PCT, CRP, blood culture, lactic acids
« STREM-1 « STNF-R2 . .

. MMP-3 ¥ MCP-1 throughout entire hospital stay

« C5a * All medications and time administered



Machine Learning Models Indicate which

Biomarkers are Important ?
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Normalized feature coefficients outputted by SVM for clinical adjudication label set. The
absolute value of each feature coefficient in SVM corresponds to its relative importance.

Taneja, et al. Scientific Reports, 2017

=Larle

$Prenosis



http://www.publicaffairs.uiuc.edu/idstandards/iis.html

True Positive Rate
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Features Decreasing in Importance

IL-6. nCD64, pulse, WBC, MMP9, IL-1ra, PCT
WBC, pulse, temperature, lactic acid, SOFA
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Taneja, et al. Scientific Reports, 2017
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From Sample to Results
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Can We Measure WBC and Subtypes from a Drop of Blood?

e

CD4+ T cell depletion

Whole Blood

CD4 Ab Inlet

RBC Lysis Region

CD4 Ab Waste

. @ RBCs
RBC Lysis ® CD4+ T cells

Buffer ©® Other WBCs

AVAAAS

* A point of care CBC from a drop of blood

Blood Inl
- WBC, Neutrophils, Monocytes Counter1 _ OO s
- CD4+, CD8+, CD64+ other sub types \\V 2 \L sing
- Protein biomarkers

Capture

Lysing of RBC in

Watkins, et al. Sci. Trans. Med. 2014 Whole Blood

Hassan, et al. Nature Protocols, 2016
Hassan, et al. Nature Comm., 2017

Counter_2 Quenching




T Cell from Healthy Donors

* IRB approved
* De-identified samples
* Healthy Subjects from UIUC
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CD 64 expression based capture as marker for sepsis
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Protein Capture on Chip
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Protein Capture on Chip
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O bobby.reddy.jr@prenosis.com
rashid.bashir@prenosis.com
rm OSI S angela.mcfarland@prenosis.com

Creating products to help hospitals understand and track sepsis.
http://www.prenosis.com/

Point of Care Device Central Platform Relevant Patient Data

Vitals, Labs, Medications

Cell + Protein Measurements i icti i
Algorithm for Predicting Sepsis Medical history, Co-morbidities

=3 157/ 9GS

Sepsis Diagnosis & Stratification
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Discovery and Reverse
Engineering

Reverse Engineering and bio-
mimicking - Regenerative Medicine

“Progenerative” Medicine

Forward Engineering and
use of Emergence for
‘Non-natural functions’




SEPCH Engineered Living Systems

Developmental Biology

Engineering & Emergence




NSF STC: EBICS
<%§€D|CB Emergent Behavior of Integrated Cellular Systems

www.ebics.net

STC OVERALL VISION
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myocytes Cellular System

actuation

On-demand

\ factories J

signal processing

transport

coordination, integration,
new functionalities

endothelial cells

|

Autonomous

bio-b
Roger Kamm, PI, (MIT), R. Bashir (UIUC), R. Nerem (GT) \__bio-bots _/

30 faculty from MIT, GT, UIUC, CCNY, UC Merced, Morehouse College

* Basic Science: To gain a deeper understanding of how cooperative cell behavior leads to the formation of
large organized cellular structures.
* Applications: To create biological "machines" in which multiple cell types coordinate to perform a

specified function.
i Bl
ook @MOREHOM:?E




SEPCH Many Possibilities Ahead
Swarms of Devices _

Single Devices

in-vivo in-vitro

Emergent Manufacturing
Water purification
Higher order functions
Self healing bio-matter

Drug Screening

Tissue on Chip

Robotics and Automation
Sensing and Monitoring

* Hyper-organs and enhanced
function

* Augmented physiology

e Continuous bio-sensing and

therapeutics (structures, building, furniture)




<€D

Biological Machines — ‘BioBots’

Prescribed tasks include sensing, information processing, transport, protein
expression, and movement.

Scaffold/

body \

Muscle
Actuators ——'

Neuron toggle switch,
momory and Control

M M/

Neuro-
muscular
Junctions

Integrated
Vasculature

Supply
channel

W

Cell-instructive Protein

microenvironment

expression

Sensors

Y, EQ;,,

Information processing

Controlled
channel

Vasculature & Cell-Based Factory




Macro-SLA

Micro-SLA

'Modified Mini-Platform | i)
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Top view
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SLA 250/50
down for every layer | Type HeCd (Gas)

Platform moves

Wavelength 325 Nnm

3D view
Micrometer Stage
Methacrylated Platform
—{____)Source of Cells and Prepolymer Solution
l|ydmAubic Stage
Computer
Projector
10X/0.3 :
Objective : ILLINOIS

............. H

Inverted
Microscope

SLM &  Aperture Collimating
Polarizers Diaphragm Adaptor

I uv
ik

Mirror Lens 2 Lens 1

Power 40 MW
XY Resolution 250 um
(Beam ¢)

Z Resolution o.21mm
(Layer)

PEGDMA M,, 1000

PEGDMA M,, 1000

Jeong et al, Adv.
Mater. 2012

prvor 4

Zorlutuna,, et al. Adv.
Func. Mat., 2011

2016



http://libna.mntl.illinois.edu/pdf/publications/202_Raman.pdf

A Muscle-Tendon-Bone (MTB)
Inspired Design

High
Stiffness



Skeletal Muscle Cell Driven
QXDKP Biobots - Gen 2
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Cvetkovic, Raman, et al. PNAS, 2014
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3D Printed Optogenetic Skeletal
Ring Muscle Powered BioBots

Muscle Ring

Manual Transfer

ChR2
Cation channel
Depolarizing
Blue light, Excitatory

Raman et al, PNAS, 2016




Directional Locomotion of Muscle Ring-Powered
Bio-Bot with Asymmetric Geometry
Optical Stimulation (2Hz)

4 6

Optical Stimulation
Electrical Stimulation

Raman et al, PNAS, 2016
Raman, et al. Nature Protocols, 2017
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Directional Locomotion of Muscle S
Ring-Powered Bio-Bot

Musclr Rings
Cvetkovic, et al. PNAS, 2014 e —

Raman, et al. PNAS 2016 7 '\\\ )
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Raman, et al. Nature Protocols, 2017 / 4 \
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Four Leg™
Bio-Bot _
Skeleton
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Transfer fo Skeleton

5,"4.
<€PICS | Neuromuscular Junction Integrationin 3D §

Add layer 2

Add layer 1
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Pearson Education, 2011




a Transfer to Bio-Bot b Day 9 after Co-Culture C
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SEPICS Important Ethical Considerations

* At what level of complexity does a biological machine
‘become’ a living organism?

* What features distinguish one from the other?
 What if the biological machines can self-repair, learn, adapt?
* 5 Ethics modules on the EBICS website




SEPICS Where We Are, and Possibilities Ahead

e 3 generations of locomotive machines demonstrated

e Control with electric fields and light

e Complex 3D geometries

* Neuro-muscular junction and control

* Vasculature

e Self repair and self healing

* Self Replication !l neuronal oscillator and toggle switch -
Learning and memory —

* Adding skin and exoskeleton (function in dry ambient)

* Adding pump and gas exchange system
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2€PICD Engineering Cellular Systems Summer School

August 6, 2018 - August 10, 2018

An exciting new summer opportunity -
EBICS Engineering Cellular Systems Summer
School is being
offered in 2018 on the University of Illinois at
Urbana-Champaign campus.

gent Behaviors of
rated Cellular Systems

LEARN ABOUT ENGINEERED

LIVING SYSTEMS THROUGH

HANDS-ON LABORATORY
MODULES and LECTURES ON:

Cell Culture/Transfection/Patterning =+
Matrix/Biomaterials + Advanced Imaging
+
Fabrication/3D Printing ¥ Microfluidic
device fabrication + Computational
Modeling+Biobots+Organ on a Chip +
Organoids

http://ebics.engr.illinois.edu/ebics-engineering-living-systems-workshop/



file://localhost/Apply now/ http/::bit.ly:2nAhbJN

Science ~
Translatlonal
Medicine -
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S Chien, R Bashir, RM Nerem, R Pettigrew, Engineering as
a new frontier for translational medicine. Sci. Transl.
Med, April 1 2015

The inclusion of engineering ideas and approaches makes
medicine a quantitative discipline that facilitates
precision diagnostics and therapeutics improving

healthcare delivery for all......Achieving this vision of
higher-quality healthcare globally while containing or
reducing its rising costs presents conflicting demands and
is a challenge for engineering and medicine ..... We posit
that the integration of engineering into medicine, and
medicine into engineering—until boundaries vanish—will
play a critical role in achieving these broad and specific
goals

Carle lllinois College of Medicine



Medical Education Must Change

Quantitative ‘ Quantitative and
Biology Precision Medicine

< Patient Care, Compassion >

Current medical

curriculum | Biologicale Clinical

Sciences Sciences Future
_ — : : ~  medical
Engineering Sciences curriculum

& Technology
Innovation, Design,
Entrepreneurship

—

Carle lllinois College of Medicine
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The first College of Medicine specilically designea
at the intersection of engineering and medicine.

Starting Summer 2018

—~
Carle lllinois College of Medicine | medicine.illinois.edu ?!-arle IEII LLINOTIS



Curriculum Framework

Flexner Report, 1910

Illinois Model, 2016

YEAR 1 YEAR 2 YEAR 3 YEAR 4
—
CE— N Elective Clinical Rotations
Basic Sciences & Engineering Required Clinical Rotations
—

Engineering Design

Carle lllinois College of Medicine
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