XVI Encuentro de Cooperación Farma-Biotech

MDN-0090: novel chemotherapeutic to treat cancer

Madrid, 14 de noviembre de 2017

MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española

<u>Content</u>

- 1. The Institution
- 2. The Product
 - a) Target Indications
 - b) Innovative mechanisms of action
 - c) Differential features facing the market
 - d) Current status of development
 - e) IPR protection
 - f) Pitfalls & Risks to be considered
- 3. Partnering Opportunities

- Independent & non-profit Research Organization

- Private-public partnership between:
- Merck Sharp and Dohme de España S.A
- Government of Andalucía (Spain)
- University of Granada (Spain)
- Established in 2008 from CIBE, former Merck Research Labs in Madrid, Spain.

Our Mission

Discovery of new bioactive compounds and innovative therapies for unmet medical and industrial needs.

MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española

XVI Encuentro de Cooperación Farma-Biotech

Health Sciences Technology Park, Granada, Spain

MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española farmaindustria

MEDINA: Microbial Natural Products Drug Discovery

http://www.medinadiscovery.com

- Multidisciplinary team of scientists (28 permanent staff, up to 40 employees)
- 2300 m² fully equipped facilities
- One of the largest microbial collections and libraries for natural products drug discovery
- High capacity center for high throughput screening
- Drug discovery research programs in infectious and tropical diseases, cancer and neurodegeneration

MEDIN

• Translational / clinical

R&D support

Unique Technology Platforms & Capacities (from discovery to early preclinical studies)

scale-up production

• Genome mining

- Bioimaging
- Mode of Action

EU-OPENSCREEN

(NMR, LC_MS)

Structural Elucidation

- Strategic role in drug discovery and high value biotechnology products
- R&D Programs to respond to unmet medical needs

• Programs based on collaborations and partnerships with academia and industry

The Product: MDN-0090 Target indications

Pancreatic Cancer: "the silent cancer"

 ✓ Treatments with conventional antitumoral therapy are not effective

✓ New treatments are urgently needed

The Product: MDN-0090 Target indications

Pancreatic Cancer: "the silent cancer"

HIT IDENTIFICATION:

MDN-0090 is:

- a small molecule of microbial origin
- identified from a anti-tumour screening campaign
- patent protected

HIT EFFECTIVENESS:

- MDN-0090 is a new *hit compound* with demonstrated *in vitro* and *in vivo* efficacy against pancreatic cancer.
- MDN-0090 inhibits pancreatic adenocarcinoma development and reduces tumor size of tumors developing both from pancreatic tumoral cells and pancreatic cancer stem cells

Inhibitor of Cancer Stem Cells (CSC) proliferation:

Synergistic effect with Gemcitabine and Selumetinib on cancer stem cells:

- Anti-tumour synergistic effect of MDN-0090 and Gemcitabine (inhibition of mitosis) in BxPC3 (Combination Index, CI= 0.18) and MiaPaca-2 (CI=0.08)
- Anti-tumour synergistic effect of MDN-0090 and Selumetinib (experimental drug, inhibitor MEK1 and MEK2) in BxPC3 (CI= 0.08) and MiaPaca-2 (CI=0.12)

MDN-0090 inhibits the tumor-initiating ability by pancreatic cancer stem cells

MDN-0090 inhibits the tumor <u>development</u> by pancreatic cancer stem cells:

In vivo effect on Cancer Stem Cells (CSC) in CSC-derived tumor xenograft models: CSC-injection Day 43 post-inoculation **Treatment 3 dose/week** MDN-00090 In vivo 50 000 cells Day 73 post-inoculation Measure tumor volume Tumor development Male BxPC3-derived CSC Female BxPC3-derived CSC 1200 1800 Control Treatment A (10 mg/kg, i.p.) Control 1600 Treatment B (20 mg/kg, i.p.) Treatment A (10 mg/kg, i.p.) 1000 Treatment B (20 mg/kg, i.p.) 1400 Tumor volume (mm3) Tumor volume (mm3) 800 1200 1000 600 800 400 600 400 200 200 0 51 55 58 61 70 73 48 51 55 58 61 70 73 13 N= 5-6 N= 3 Post-inoculation days Post-inoculation days

MoA: MDN-0090 targets Ras/Raf/MEK/ERK pathway

Decreased p-ERK 1/2 levels

MoA: MDN-0090 targets Ras/Raf/MEK/ERK pathway

✓ MDN-0090 reduces activation of ERK1/2 (western blot and AlphaLISA assays)

✓ MDN-0090 inhibits PKA (radiometric protein kinase assay)

Cell targets

MDN-0090 targets both actively dividing cancer cells and quiescent cancer stem cells

Current treatment options:

Gemcitabine +

Treatment	ΜοΑ	Pros and cons	
Gemcitabine (FDA 1996)	Cytidine analogue-Inhibition of mitosis	Poor effectiveness (increase OS 6 months)	
Leucovorin	Adjuvant (vitamer of folic acid)	Adjuvant	
Capecitabine	Prodrug of 5-FU	Side effects, treatment of breast and colon cancer	
Erlotinib (FDA 2005)	EGFR inhibitor	Increase OS 6.4 months vs 6 gem. alone	
Cisplatin/oxaliplatin	Inhibition of DNA synthesis	Severe side effects (neurotoxicity, rhabdomyolysis)	
Nab-paclitaxel (FDA 2013)	Stabilizer microtubule-Inhibition of mitosis	Increase OS to 2 years	
Irinotecan	Inhibition of DNA replication and transcription	Extreme suppression of the immune system	
FOLFIRINOX (oxaliplatin, irinotecan, 5-FU and leucovorin)		Increase OS 4.3 months more, severe side effects	

OS, overall survival

- Poor effectiveness
- High toxicity and severe adverse effects

There are no drugs in the market with MoA involving the inhibition of PKA

Current treatment options:

Treatment	ΜοΑ	Pros and cons	
Gemcitabine (FDA 1996)	Cytidine analogue-Inhibition of mitosis	Poor effectiveness (increase OS 6 months)	
Leucovorin	Adjuvant (vitamer of folic acid)	Adjuvant	
Capecitabine	Prodrug of 5-FU	Side effects, treatment of breast and colon cancer	
Erlotinib (FDA 2005)	EGFR inhibitor	Increase OS 6.4 months vs 6 gem. alone	
Cisplatin/oxaliplatin	Inhibition of DNA synthesis	Severe side effects (neurotoxicity, rhabdomyolysis)	
Nab-paclitaxel (FDA 2013)	Stabilizer microtubule-Inhibition of mitosis	Increase OS to 2 years	
Irinotecan	Inhibition of DNA replication and transcription	Extreme suppression of the immune system	
FOLFIRINOX (oxaliplatin, irinotecan, 5-FU and leucovorin)		Increase OS 4.3 months more, severe side effects	

OS, overall survival

MDN-0090 opportunity:

- High efficacy in mice models
- Good safety profile in mice (up to 200 mg/kg, oral)
- Novel target in a key pathway in pancreatic cancer

Targeted Pathways in cancer drug discovery:

Pathways	Targets	
K-ras	Raf, MAPK, Erk, PI3Ks, PDK-1	
p53	p53	
Growth factor	EGF, EGFR, FGF, FGFR, VEGF	
Epithelial to mesenchymal transition (EMT)	Wnt, β-catenin, TNFα, Notch, Snail-1, Slug, E-cadherin	

PKA in cancer

- ✓ cAMP/PKA signaling pathway is altered in different cancers [Naviglio et al. 2009]
- PKA is involved in neoplastic transformation and tumor growth [Mantovani et al., 2008]
- ✓ PKA regulates actin dynamics, controlling cytoskeleton remodeling and cell migration [McKenzie et al., 2011]
- Analogues of cAMP that inhibit PKA cause inhibition of cancer cell growth [Cho-Chung and Nesterova, 2005]

Targeting PKA in cancer therapy:

Clinical trials:

- ✓ Evaluating the Effect of ADRB2 Blockers on PKA/BAD/CREB Signaling in Patients Undergoing Prostatectomy. 2017-. Participant recruitment.
- ✓ Pentoxifylline Treatment in Acute Pancreatitis. 2015-. Pentoxifylline is a competitive nonselective phosphodiesterase inhibitor which raises intracellular cAMP, activates PKA, ... Ongoing study.
- ✓ Phase II Midostaurin in Aggressive Systemic Mastocytosis and Mast Cell Leukemia. Midostaurin is a broad-spectrum protein kinase inhibitor (PKC, PKA, etc...). 2005-2011. Results posted: serious adverse effects.

Targeting Protein Kinase A in cancer therapy: an update [Sapio et al 2014]:

- PKA is largely known to control cell growth in many cancer types in vitro and in vivo
- Targeting PKA by either site-selective cAMP analogs or antisense approaches has clearly shown antitumor activity in cancer patients.
- However, discovering further PKA inhibitors is desirable

The Product: Current status of development

MDN-0090

Molecular features, physicochemical properties and PK

- New Family of 6 aromatic compounds (MW: 354 to 405 Da)
- HBD/HBA: 4/6 ; clogP: 5.54 ± 0.87
- Chemical stability at 1 and 2 μ M: stable up to 5 hours at pH 1.2, 4.7 and 7.4.
- Metabolic stability (microsomes): T_{1/2} = 4.98 min
- **Plasma stability** (% of parent compound remaining): 8.9% (5 min), 7.0% (15 min), 5.7% (30 min), 3.9% (60 min), 4.7% (120 min)
- Plasma Protein binding (Fraction bound in %): 95.1 ± 2.4 %
- **Metabolomic profiling**: ketone and oxidation metabolites
- **PAMPA (parallel artificial membrane permeability assay):** moderate membrane permeability (Pe= 3.1+1.4x10⁻⁶ cm s⁻¹)
- Mouse PK (ip, formulation 20 mg/Kg in PBS): Cmax (initial) (ng/mL)= 1638.63; Cl (clearance) (mL/min*Kg)= 23; AUC (ng*min/mL)= 840208.2; t1/2 (h) = 11; Vd (L/Kg)=12.2.

The Product:

Current status of development

MDN-0090

Liability and ADME: no cardiotoxic, mild CYP inhibition and no reactivity

- No Cardiotoxicity: hERG, Nav 1.5 and Cav1.2 $IC_{50} > 50 \mu M$
- **CYP inhibition:** CYP3A4 (IC₅₀=13.41 μ M); CYP2C9 (IC₅₀=6.14 μ M); CYP2D6 (IC₅₀ >34.5 mM)
- Non-mutagenic: Ames test negative
- **No reactivity observed**: not potential reactive metabolites was found in glutathionetrapped reactive metabolites *in vitro* assay in human liver microsomes by LCMS.

New *in vitro* results in other cancer stem cells: prostatic cancer

MDN-0090 inhibits primary prostatic cancer stem cells proliferation in vitro:

PR318 (Gleason 4+5): ED₅₀= 6.9 μM, androgen sensitive ED₅₀= 9.7 μM, androgen resistant PR285 (Gleason 3+4):

 ED_{50} = 2.6 μ M, and rogen sensitive

The Product: Current status of development

Ongoing studies:

- ✓ Full synthetic route determination
- ✓ Full MoA determination
- ✓ Medicinal chemistry: initial development of analogues based in structure-activity relationship (SAR). Family compounds development.

Future development:

- ✓ Complete SAR development. Hit-to-lead
- ✓ *in vitro* and *in vivo* lead efficacy
- Lead to Candidate optimization: improvement compound PK/PD; improvement of administration pattern (tumor directed-nanoparticles);
- ✓ Candidate nomination and preclinical regulatory package (IND)

The Product:

IPR protection

Patent protected: WO2016174226 (PCT/EP2016/059650)

Family compounds:

Priority date: 30/04/2015	Compound	ED ₅₀ (μM)*	
PCT Regional Patent extension:	MDN-0089	7.6	
US, Europe, Canada, China, Japan and Korea	MDN-0090	4.7	
	MDN-0092	9.1	
	MDN-0093	8.7	

Claims:

* Citotoxicity in BxPC3 (human pancreatic cell line)

- ✓ For use in medicine
- ✓ For use in the treatment and/or prophylaxis of cancer

Examples included:

- ✓ Effect on pancreatic and pancreatic CSC cells *in vitro* and *in vivo*
- ✓ Synergistic effect with gemcitabine *in vitro*

The Product: Pitfalls and Risks to be considered

Strengths

Pitfalls

Hit compound

- In vitro and in vivo anti-tumoral effect on pancreatic parental and CSCs
- ✓ No cardiotoxicity, non-mutagenic
- ✓ Good safety in vivo

MedChem Development required:

- ✓ Full synthetic route determination
- ✓ Full MoA determination
- Primary pancreatic cancer studies
- ✓ SAR development
- ✓ Hit-to-Lead and Lead to Candidate

Opportunities

Risks

Hit compound:

- ✓ Novel compound, patent filed
- Interesting target and not very exploited
- ✓ Family of active compounds

Risks of future Hit-to-Lead development:

- Poor improvement of compound efficacy
- Improved efficacy implies increased toxicity
- ✓ Poor bioavailability of lead compound

Looking for industrial partners interested in:

- Establishing a collaboration to ensure **Hit-to-lead development and Lead-to-**Candidate optimization programs
- In-licensing option of a potential future pre-clinical candidate

<u>Contact</u>: Dr. Olga Genilloud – Scientific Director olga.genilloud@medinaandalucia.es

Avda. Conocimiento 34, Parque Tecnológico Ciencias de la Salud - 18016 Granada, SPAIN Tel: +34 958 993 965 Fax: +34 958 846 710

COLUMN NO.

www.medinadiscovery.com

