# Non-invasive method for diagnosis and monitoring of glioblastoma



Madrid, 29 de octubre de 2019





MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española







## 1. The Institution



Brief description of IdiPAZ: Institute for Health Research (HULP, HUF, UAM and FIBHULP) Constitution on December 15, 2009 Accredited institution by the Health Institute Carlos III (ISCIII) Re-accredited on May 2015 for a 5 years period 55 research groups 6 six strategic areas Neurosciences Cardiovascular Infectious diseases and immunity area Large system pathologies Cancer and human molecular genetics Surgery, transplant and health technologies area

Certified according to ISO 9001:2015 and UNE 166002:2014

![](_page_1_Picture_6.jpeg)

![](_page_2_Picture_0.jpeg)

# Cancer and human molecular genetics

Area Coordinator: Amparo Cano García

#### **Research Groups**

INGEMM - INSTITUTO DE GENETICA MEDICA Y MOLECULAR (INSTITUTE OF MEDICAL AND MOLECULAR GENETICS)

Pablo Lapunzina Badía

MOLECULAR GENETICS OF DYSTROGLYCANOPATHIES

Jesús Cruces Pinto

TRASLATIONAL ONCOLOGY

Jaime Feliu Battle

EXPERIMENTAL THERAPIES AND BIOMARKERS IN CANCER

Inmaculada Ibáñez de Cáceres Javier de Castro Carpeño

OTO-NEUROSURGERY RESEARCH

Luis Lassaletta Atienza

CANCER MOLECULAR PATHOLOGY AND THERAPEUTIC TARGETS David Hardisson Hernáez

MECHANISMS OF TUMOUR PROGRESSION

Amparo Cano García

ANIMAL AND CELL MODELS FOR DETECTION AND CHARACTERISATION OF LEUKEMIC STEM CELLS

Carmela Calés Bourguet

RESEARCH AND DIAGNOSIS OF INHERITED METABOLIC DISEASES María Belén Pérez González

| TERAPIAS | EXPERIMEN | <b>NTALES Y</b> |
|----------|-----------|-----------------|
|          |           |                 |

**BIOMARCADORES EN CÁNCER** 

Composición y líneas Publicaciones Proyectos Tesis doctorales Ensayos clínicos Patentes y marcas

#### Composición

| Nombre                                | Cargo                                                                           | Institución                                                           |
|---------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------|
| María Inmaculada Ibáñez<br>de Cáceres | Investigadora Senior (Contrato Miguel<br>Servet- Tipo 2)<br>Jefe de Laboratorio | Hospital Universitario<br>La Paz                                      |
| Javier de Castro Carpeño              | Jefe de Sección de Oncología<br>Profesor Asociado                               | Hospital Universitario<br>La Paz<br>Universidad Autónoma<br>de Madrid |
| Cristóbal Belda Iniesta               | Facultativo Especialista de Área en<br>Oncología                                | Hospitales de Madrid                                                  |
| Jaime Carrillo García                 | Investigador Postdoctoral                                                       | IIB "Alberto Sols"                                                    |
| María Isabel Esteban<br>Rodríguez     | Facultativo Especialista de Área en<br>Anatomía Patológica                      | Hospital Universitario La<br>Paz                                      |
| María Galardi Castilla                | Investigadora Predoctoral                                                       | IIB "Alberto Sols"                                                    |
| Julia Jiménez Hernández               | Investigadora Predoctoral                                                       | Universidad Autónoma de<br>Madrid                                     |
| Cristina Manguán García               | Técnico de Laboratorio                                                          | IIB "Alberto Sols"                                                    |
| Olga Pernía Arias                     | Técnico de Laboratorio (Contrato PTA)                                           | Hospital Universitario La<br>Paz                                      |
| Rosario Perona Abellón                | Profesora de Investigación                                                      | IIB "Alberto Sols"                                                    |
| Verónica Pulido Sanz                  | Investigadora Predoctoral                                                       | Hospital Universitario La<br>Paz                                      |
| Garcilaso Riesco Eizaguirre           | Facultativo Especialista de Área en<br>Endocrinología y Nutrición               | Hospital Universitario La<br>Paz                                      |
| Carlos Rodríguez Antolín              | Bioinformático Contratado                                                       | Hospital Universitario La<br>Paz                                      |
| Rocío Rosas Alonso                    | Farmacéutica Interna Residente                                                  | Hospital Universitario La<br>Paz                                      |
| Isabel Sánchez Pérez                  | Profesora Contratada Doctor                                                     | Universidad Autónoma de<br>Madrid                                     |
| Leandro Sastre Garzón                 | Investigador Científico                                                         | IIB "Alberto Sols"                                                    |
| Javier Andrés Soto                    | Investigador Predoctoral                                                        | Universidad Autónoma de<br>Madrid                                     |
| Olga Vera Puente                      | Investigadora Predoctoral                                                       | Hospital Universitario La<br>Paz                                      |

![](_page_3_Picture_0.jpeg)

## IdiPAZ's Innovation Indicators (2014-2018)

| Nº Patents            | OEPM | EPO | USPO | Other Offices |
|-----------------------|------|-----|------|---------------|
| Priority applications | 13   | 3   | 1    | 0             |
| РСТ                   | 12   | 3   | 0    | 0             |
| Regional phase        | 0    | 4   | 4    | 2             |
| Granted patents       | 20   | 2   | 1    | 0             |

Exploita

Internat

Natio

![](_page_3_Picture_3.jpeg)

The innovative activity carried out in IdiPAZ associated with the exploitation of its technology portfolio has generated a return that exceeds the 300,000 euros barrier in the last 5 years

![](_page_3_Picture_5.jpeg)

|                                               | TOTAL |                      | TOTAL                           |                            |             |
|-----------------------------------------------|-------|----------------------|---------------------------------|----------------------------|-------------|
| Nº Trademarks<br>(Granted vs<br>applications) | 15/17 | Exploited trademarks | lemarks 16 TM Licensing revenue |                            | 202.471,88€ |
|                                               | TOTAL |                      | TOTAL                           |                            | TOTAL       |
| SW/apps                                       | 18    | Nº SW exploited      | 11                              | SW Licensing revenue       | 3.159,91€   |
|                                               | TOTAL |                      | TOTAL                           |                            | TOTAL       |
| IP licences                                   | 35    | IP Licensing revenue | 16.730 €                        | Nº Centres of implantation | 35          |

![](_page_4_Picture_0.jpeg)

# The group: Cancer epigenetics

![](_page_4_Picture_2.jpeg)

![](_page_5_Picture_1.jpeg)

![](_page_5_Figure_2.jpeg)

![](_page_6_Picture_1.jpeg)

![](_page_6_Figure_2.jpeg)

![](_page_6_Figure_3.jpeg)

![](_page_7_Picture_1.jpeg)

## **General overview**

Glioblastoma: Most frequent and Worst prognosis

![](_page_7_Figure_4.jpeg)

Easy commercialization without additional experimental development. For immediate clinical use (already implanted in HULP)

Identification **by liquid biopsy** of an approved marker of mandatory use according to clinical guidelines for glioblastoma diagnosis in tissue.

Allows for **the first time** the diagnosis and **follow-up** of patients using **non-invasive** methodology

There is an **approved** drug for the treatment of this pathology in addition to new **ongoing new studies phase III** that refer to the use this marker.

## Target Indications

![](_page_8_Picture_1.jpeg)

| Grade             | WHO grade I              | WHO grade II                        | WHO grade III                        | WHO grade IV |
|-------------------|--------------------------|-------------------------------------|--------------------------------------|--------------|
| Type              | Circumscript             |                                     | Diffuse                              |              |
| Туре              |                          | Low-grade                           | High                                 | -grade       |
| Astrocytoma       | Pilocytic<br>astrocytoma | Low-grade<br>astrocytoma            | Anaplastic<br>astrocytoma            | Glioblastoma |
| Oligodendroglioma |                          | Low-grade<br>oligodendro-<br>glioma | Anaplastic<br>oligodendro-<br>glioma |              |
| Oligo-astrocytoma |                          | Low-grade<br>oligo-<br>astrocytoma  | Anaplastic<br>oligo-<br>astrocytoma  |              |

![](_page_8_Picture_3.jpeg)

![](_page_8_Figure_4.jpeg)

- 60% Brain Neoplasias.
- All ages 17-99 years old (more frequently 50-60 years old).
- Difficult accessibility and with little clinical progress over the last few years.
- Blood Brain barrier prevents the tumour from spreading but difficults diagnosis by ctDNA.
- Diagnosis in tumour tissue (paraffin surgical sample or biopsy).
- Standard treatment established in 2005 without modifications: maximal surgical excision followed by RT with concomitant QT.

![](_page_9_Picture_1.jpeg)

## ESMO Guidelines 2014 and 2018 for Molecular markers in gliomas

## clinical practice guidelines

Annals of Oncology 25 (Supplement 3): iii93-iii101, 2014 doi:10.1093/annonc/mdu050 Published online 29 April 2014

## High-grade glioma: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up<sup>†</sup>

R. Stupp<sup>1</sup>, M. Brada<sup>2</sup>, M. J. van den Bent<sup>3</sup>, J.-C. Tonn<sup>4</sup> & G. Pentheroudakis<sup>5</sup> on behalf of the ESMO Guidelines Working Group\*

<sup>1</sup>Department of Oncology and Cancer Centre, University Hospital Zurich, Zurich, Switzerland; <sup>2</sup>Department of Molecular and Clinical Cancer Medicine, University of

Liverpool, Clatterbridge Cancer Centre, Wirral, UK; <sup>3</sup>Der. Ludwig-Maximilians-University, Munich, Germany; <sup>5</sup>Der.

![](_page_9_Figure_9.jpeg)

![](_page_10_Picture_1.jpeg)

## Chromosome 10: 131,265,448-131,566,271

![](_page_10_Picture_3.jpeg)

All non detected compartments MGMT detected in Nucleoplasm

![](_page_10_Figure_5.jpeg)

- MGMT is expressed in all tissues.
- 30% of gliomas present MGMT silenced by DNA promoter methylation, which is associated with a best treatment response.

Table 1 Hypermethylation of MGMT promoter in primary tumors

|                         | Primary tumors |
|-------------------------|----------------|
| Brain tumors            | 55/166 (33%)   |
| Gliomas                 | 54/140 (38%)   |
| Nongliomas              | 1/26 (3%)      |
| Colon cancer            | 14/36 (38%)    |
| Lung cancer             | 10/41 (24%)    |
| NSCLC                   | 10/34 (29%)    |
| SCLC                    | 0/7            |
| Head and neck carcinoma | 6/21 (28%)     |
| Lymphomas               | 15/61 (25%)    |
| Breast cancer           | 0/36           |
| Ovarian cancer          | 0/23           |
| Endometrial cancer      | 0/17           |
| Leukemias               | 2/31 (6%)      |
| Pancreatic carcinoma    | 2/18 (11%)     |
| Melanoma                | 2/18 (11%)     |
| Renal carcinoma         | 1/12 (8%)      |
| Bladder carcinoma       | 2/44 (4%)      |

![](_page_11_Picture_1.jpeg)

|                  | MGMT Methylation                                                                       |
|------------------|----------------------------------------------------------------------------------------|
|                  | O6-methylguanine DNA methyltransferase (MGMT)                                          |
| Function         | Enzyme that repairs the DNA by removing the alkyl group (CH $_3$ ) from the O6 Guanine |
| Detection        | MSP and QMSP                                                                           |
| Predictive value | Glioblastoma, chemotherapy response                                                    |

![](_page_11_Figure_3.jpeg)

![](_page_11_Figure_4.jpeg)

![](_page_12_Picture_1.jpeg)

#### The NEW ENGLAND JOURNAL of MEDICINE

#### ORIGINAL ARTICLE

#### Radiotherapy plus Concomitant and Adjuvant Temozolomide for Glioblastoma

Roger Stupp, M.D., Warren P. Mason, M.D., Martin J. van den Bent, M.D., Michael Weller, M.D., Barbara Fisher, M.D., Martin J.B. Taphoorn, M.D., Karl Belanger, M.D., Alba A. Brandes, M.D., Christine Marosi, M.D., Ulrich Bogdahn, M.D., Jürgen Curschmann, M.D., Robert C. Janzer, M.D., Samuel K. Ludwin, M.D., Thierry Gorlia, M.Sc., Anouk Allgeier, Ph.D., Denis Lacombe, M.D., J. Gregory Cairncross, M.D., Elizabeth Eisenhauer, M.D., and René O. Mirimanoff, M.D., for the European Organisation for Research and Treatment of Cancer Brain Tumor and Radiotherapy Groups and the National Cancer Institute of Canada Clinical Trials Group\*

![](_page_12_Figure_6.jpeg)

![](_page_12_Figure_7.jpeg)

#### CONCLUSIONS

The addition of temozolomide to radiotherapy for newly diagnosed glioblastoma resulted in a clinically meaningful and statistically significant survival benefit with minimal additional toxicity.

![](_page_13_Picture_1.jpeg)

![](_page_13_Picture_2.jpeg)

Table 1. Long-term survival results according to type of treatment and *MGMT* status in the 'Stupp trial' [5]

| MGMT status  | Treatment | Median<br>OS<br>(months) | 2-year<br>OS (%) | 3-year<br>OS (%) | 4-year<br>OS (%) | 5-year<br>OS (%) |
|--------------|-----------|--------------------------|------------------|------------------|------------------|------------------|
| Unmathulated | RT        | 11.8                     | 1.8              | 0                | 0                | 0                |
| Unmethylated | RT + TMZ  | 12.6                     | 14.8             | 11.1             | 11.1             | 8.3              |
| Maladard     | RT        | 15.3                     | 23.9             | 7.8              | 7.8              | 5.2              |
| Methylated   | RT + TMZ  | 23.4                     | 48.9             | 27.6             | 22.1             | 13.8             |

*MGMT*, O<sup>6</sup>-methylguanine-DNA methyl-transferase; OS, overall survival; RT, radiotherapy; TMZ, temozolomide

MGMT Promoter Methylation in Glioma: ESMO Biomarker Factsheet Giulio Metro, Tiziana Pierini, Roberta La Starza. 18 January 2019 Differential features facing the market

![](_page_14_Figure_1.jpeg)

Cankovic. 2013: The Role of MGMT Testing in Clinical Practice A Report of the Association for Molecular Pathology

## Differential features facing the market

![](_page_15_Picture_1.jpeg)

![](_page_15_Picture_2.jpeg)

## Target indications: Clinical significance of MGMT

![](_page_16_Picture_1.jpeg)

U.H.La PAZ: Glioblastoma, Anaplastic astrocytomas and chilhood brain tumors

![](_page_16_Figure_3.jpeg)

![](_page_16_Picture_4.jpeg)

![](_page_16_Picture_5.jpeg)

Response time: 7-10 days

Since 2014 there have been 15 cases in which the treatment has been modified because it did not meet the clinical criteria based on the methylation status of the MGMT gene. 200.000 euros

![](_page_16_Picture_8.jpeg)

Pitfalls associated to the current diagnosis

![](_page_17_Picture_1.jpeg)

![](_page_17_Figure_2.jpeg)

![](_page_18_Picture_1.jpeg)

MGMT methylation detection in blood.

None of them have enough sensitivity to be used in the clinical practice

| JCR<br>2018 | Year of publication | Article<br>(PMID) | % S                 | N  | Tumor type | Technique         |
|-------------|---------------------|-------------------|---------------------|----|------------|-------------------|
| NO<br>JCR   | 2015                | 26171163          | 37,3<br>(SERUM)     | 89 | glioma     | PCR + HPLC        |
| D1          | 2010                | 20150384          | 59<br>(SERUM)       | 41 | glioma     | Qmsp con B-actina |
| D1          | 2009                | 19773381          | 27-60 %<br>(PLASMA) | 64 | colon      | MSP               |

Pyrosequencing versus methylationspecific PCR for assessment of MGMT methylation in tumor and blood samples of glioblastoma patients August 2019

Anna Estival, Carolina Sanz, Jose-Luis Ramirez, Jose Maria Velarde, Marta Domenech, Cristina Carrato, Ramón de las Peñas, Miguel Gil-Gil, Juan Sepúlveda, Roser Armengol, Isaac Cardiel, Alfonso Berrocal, Raquel Luque, Ana Herrero & Carmen Balana ⊠

Scientific Reports9, Article number: 11125 (2019)| Download Citation ±399Accesses17AltmetricMetrics ≫

### Abstract

Circulating biomarkers in blood may provide an interesting alternative to risky tissue biopsies in the diagnosis and follow-up of glioblastoma patients. We have assessed MGMT methylation status in blood and tissue samples from unresected glioblastoma patients who had been included in the randomized GENOM-009 trial. Paired blood and tissue samples were assessed by methylation-specific PCR (MSP) and pyrosequencing (PYR). After establishing the minimum PYR cut-off that could yield a significant difference in overall survival, we assessed the sensitivity, specificity, positive predictive value and negative predictive value (NPV) of the analyses. Methylation could be detected in cfDNA by both MSP and PYR but with low concordance with results in tissue. Sensitivity was low for both methods (31% and 38%, respectively), while specificity was higher for MSP in blood than for PYR in plasma (96% vs 76%) and NPV was similar (56 vs 57%). Concordance of results in tissue by MSP and PYR was 84.3% (P < 0.001) and correlated with outcome. We conclude that detection of cfDNA in the blood of glioblastoma patients can be an alternative when tumor tissue is not available but methods for the detection of cfDNA in blood must improve before it can replace analysis in tumor tissue.

![](_page_19_Picture_0.jpeg)

## MGMT methylation in free circulating DNA

![](_page_19_Figure_2.jpeg)

Low sensitivity to detect the presence of MGMT DNA methylation in ctDNA. There is also a low ratio of reproducibility due to the low levels of methylation found in ctDNA

| PACIENTE | MSP tumor | qMSP % M tumor | qMSP % ctDNA |
|----------|-----------|----------------|--------------|
| GB1      | М         | 99.9           | 0            |
| GB2      | М         | 92.6           | 0            |
| GB3      | М         | 91.5           | 0            |
| GB4      | М         | 77.0           | 1.5          |
| GB5      | М         | 73.2           | 13.3         |
| GB6      | М         | 100.0          | 0            |
| GB7      | U         | 0.4            | 0            |
| GB8      | U         | 0.0            | 0            |
| GB9      | U         | 0.0            | 0            |
| GB10     | U         | 0.0            | 0            |
| GB11     | U         | 0.0            | 0            |
| GB12     | U         | 0.0            | 0            |
| GB13     | U         | 0.0            | 0            |
| GB14     | U         | 0.0            | 0            |
| GB15     | U         | 0.0            | 0            |
| GB16     | U         | 0.0            | 0            |
| GB17     | U         | 0.0            | 0            |
| GB18     | U         | 0.0            | 0            |
| GB19     | U         | 0.0            | 0            |
| GB20     | U         | 0.0            | 0            |

ctDNA Sensitivity M = 33%ctDNA Specificity U = 100%

## Innovative approach

![](_page_20_Picture_1.jpeg)

![](_page_20_Figure_2.jpeg)

#### frontiers in CELLULAR NEUROSCIENCE

REVIEW ARTICLE published: 12 December 2014 doi: 10.3389/fncel.2014.00418

## Gliomas and the vascular fragility of the blood brain barrier

Luiz Gustavo Dubois<sup>1†</sup>, Loraine Campanati<sup>2†</sup>, Cassia Righy<sup>1</sup>, Isabella D'Andrea-Meira<sup>1</sup>, Tania Cristina Leite de Sampaio e Spohr<sup>1</sup>, Isabel Porto-Carreiro<sup>1</sup>, Claudia Maria Pereira<sup>3</sup>, Joana Balça-Silva<sup>4</sup>, Suzana Assad Kahn<sup>1</sup>, Marcos F. DosSantos<sup>2</sup>, Marcela de Almeida Rabello Oliveira<sup>5</sup>, Adriana Ximenes-da-Silva<sup>5</sup>, Maria Celeste Lopes<sup>4</sup>, Eduardo Faveret<sup>1</sup>, Emerson Leandro Gasparetto<sup>1</sup> and Vivaldo Moura-Neto<sup>1,2</sup>\*

![](_page_20_Figure_7.jpeg)

![](_page_21_Picture_1.jpeg)

### MGMT-methylation in DNA from Circulating Exosomes

![](_page_21_Picture_3.jpeg)

We are able to detect the presence of MGMT promoter methylation in the DNA extracted from the plasma exosomes with high sensitivity and specificity

| PACIENTE       | MSP t                                       | qMSP % M tumor | qMSP% ADN exosomal |  |  |  |  |
|----------------|---------------------------------------------|----------------|--------------------|--|--|--|--|
| GB1            | М                                           | 99.9           | 87.97              |  |  |  |  |
| GB2            | М                                           | 77             | 100                |  |  |  |  |
| GB3            | М                                           | 92.6           | 90,6               |  |  |  |  |
| GB4            | М                                           | 100.0          | 89.2               |  |  |  |  |
| GB6            | М                                           | 99.9           | 87.97              |  |  |  |  |
| GB7            | U                                           | 0              | 0                  |  |  |  |  |
| GB8            | U                                           | 0              | 0                  |  |  |  |  |
| GB9            | U                                           | 0              | 0                  |  |  |  |  |
| GB11           | U                                           | 0              | 0                  |  |  |  |  |
| <u>0 0 0 0</u> | Biopsy (no surgery)<br>Tumor heterogeneity? |                |                    |  |  |  |  |
| GB19           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB20           | U                                           | 0.0            | 88,4               |  |  |  |  |
| GB21           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB22           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB23           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB24           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB25           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB26           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB31           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB32           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB33           | U                                           | 0.0            | 0                  |  |  |  |  |
| GB34           | U                                           | 0.0            | 0                  |  |  |  |  |

DNA exosomes Sens. M: 100%

DNA exosomes Speci. U: 95%

![](_page_22_Picture_0.jpeg)

MGMT methylation as a tool for clinical monitoring of GBM patients

![](_page_22_Figure_2.jpeg)

![](_page_23_Picture_0.jpeg)

MGMT methylation as a tool for clinical monitoring of GBM patients

![](_page_23_Figure_2.jpeg)

![](_page_24_Picture_0.jpeg)

|             |                   |            |            |                                            |                                                     |            |               |                                    |                |           |       |                                                                      |                                                                        | The second shall be dealers and shall be |
|-------------|-------------------|------------|------------|--------------------------------------------|-----------------------------------------------------|------------|---------------|------------------------------------|----------------|-----------|-------|----------------------------------------------------------------------|------------------------------------------------------------------------|------------------------------------------|
|             | Status            | Phase      | CancerType | Drug                                       | Additional Treatme                                  | nt         | Location      | n                                  |                |           |       |                                                                      |                                                                        | Hospital Universita                      |
| NCT02667587 | MGMT METHYLATED   |            | GBM        | Nivolumab and<br>Temozolomide              | Radiation Therapy (                                 | RT)        | USA           |                                    |                | _         |       |                                                                      |                                                                        |                                          |
| NCT02617589 | MGMT UNMETHYLATED | ш          | GBM        | Nivolumab and<br>Temozolomide              | Radiation Therapy (                                 | RT)        | USA           |                                    |                |           |       |                                                                      |                                                                        |                                          |
| NCT02685605 |                   |            | GBM        | Iomozolomido                               | Radiation: Intraopero<br>radiotherapy<br>Radiation: | itive      | A 211         |                                    | 10             | 9 N/      | CRAT  |                                                                      | ala (750/ 6                                                            |                                          |
|             |                   |            | GBM        | Adjuvant                                   | Biological: Dendritic                               | cell       | USA           |                                    | 19             | ZIV       | GIVIT | clinical tri                                                         | ais (75% c                                                             | BINI)                                    |
| NCT03548571 | MGMT METHYLATED   | II and III | GBM        | Sunitinib and                              | immunization                                        |            | Norway        | /                                  |                |           | 44    | roeruiting r                                                         | ationte                                                                |                                          |
| NCT02020447 |                   |            | GBM        | Lomustine<br>Lomustine,<br>Regorafenib and | Dadiation therapy (                                 |            | Netheriar     |                                    |                |           | 44    | recruiting                                                           | Jatients                                                               |                                          |
| NCT03367715 | MGMT UNMETHYLATED |            | GBM        | Nivolumab and<br>Ipilimumab                | Radiation Therapy (                                 | RT)        | USA           |                                    |                |           |       | 6 at Phase                                                           |                                                                        |                                          |
| NCT03643549 | MGMT UNMETHYLATED | 11         | GBM        | Bortezomib and<br>Temozolomide             |                                                     |            | Noruego       | <u>a</u>                           |                |           |       |                                                                      |                                                                        |                                          |
| NCT02717962 | MGMT UNMETHYLATED | 11         | GBM        | Dianhydrogalactitol<br>VAL-083             |                                                     |            | USA           | _                                  | _              |           |       |                                                                      |                                                                        |                                          |
| NCT03050736 | MGMT UNMETHYLATED | 11         | GBM        | (Dianhydrogalactitol<br>)                  |                                                     |            | China         | н                                  | YLATED         | I and II  | GBM   | Olaptesed pegol                                                      | Radiation Therapy (RT)                                                 | Germany                                  |
| NCT03743662 | MGMT METHYLATED   | 11         | GBM        | Nivolumab                                  | Radiation Therapy (                                 | RT)        | USA           | <u> </u>                           | YLATED         | I and II  | GBM   | Temferon                                                             |                                                                        | Italy                                    |
| NCT03522298 |                   | 11         | GBM        | GDC-0084                                   |                                                     |            | USA           |                                    |                | l an d ll | CILL  | APG101, Alectinib, Idasanutlin,<br>Atezolizumab, Vismodegib,         |                                                                        | C                                        |
| NCT03741244 | AND UNMETHYLATED  | 11         | GBM        | Temozolomide                               | Diatan (Supplemen                                   | .+.        | China         |                                    |                | I and II  | GBM   | IMA950/Poly-ICLC and<br>IMA950/Poly-ICLC and                         |                                                                        | Germany                                  |
| NCT03363659 |                   | 11         | GBM        | Temozolomide                               | Copper gluconate                                    | e          | USA           | A                                  |                | I and II  | GBM   | pembrolizumab                                                        | Rediction Thorspy (PT)                                                 | Switzerland                              |
| NCT03018288 |                   | 11         | GBM        | Temozolomide                               | Biological: HSPPC-S                                 | 96         | USA           | <u></u> H                          | YLATED         | 1         | GBM   | Tinostamustine                                                       | Radiation Therapy (RT)                                                 | USA                                      |
| NCT02179086 |                   | 11         | GBM        | Temozolomide                               | Radiation: 3-dimensio                               | onal       | USA           | <u>H</u>                           | YLATED         | 1         | GBM   | Microtubule-Targeted Agent<br>BAL101553<br>CART-EGFRvIII T cells and | Radiation Therapy (RT)                                                 | USA                                      |
| NCT03047473 | AND UNMETHYLATED  |            | GBM        | Biological: avelumab                       |                                                     | NCT0353535 |               |                                    |                |           | GBM   | Pembrolizumab                                                        | Radiation Therapy (RT)                                                 | USA                                      |
|             |                   |            |            |                                            |                                                     | NCT0310778 | 30 MGM        | AT UNMETH                          | YLATED         | I         | GBM   | MDM2 Inhibitor AMG-232                                               | Radiation Therapy (RT)                                                 | USA                                      |
|             |                   |            |            |                                            |                                                     | NCT0357661 | 12 UI<br>MGMT | I METHYLA                          | TED AND        | 1         | GBM   | Temozolomide                                                         | Radiation Therapy (RT)                                                 | USA                                      |
|             |                   |            |            |                                            |                                                     | NCT0322410 | MGMT          | NMETHYLA<br>I METHYLAI<br>NMETHYLA | TED AND        |           | GBM   | TG02 and Temozolomide<br>Hydroxyurea and<br>Temozolomide             | Radiation Therapy (RT)                                                 | Switzerland and France                   |
|             |                   |            |            |                                            |                                                     | NCT0351406 | 59 MGMT       | í methylat<br>Nmethyla             | 'ED AND<br>TED | I         | GBM   | Ruxolitinib and Temozolomide                                         | Radiation Therapy (RT)                                                 | USA                                      |
|             |                   |            |            |                                            |                                                     | NCT0404770 | MGMT          | [ METHYLA]<br>NMETHYLA             | ED AND<br>TED  | I         | GBM   | Nivolumab and<br>Temozolomide                                        | Radiation Therapy (RT) and<br>Biological: IDO1 Inhibitor<br>BMS-986205 | USA                                      |
|             |                   |            |            |                                            |                                                     | NCT0184914 | MGMT          | i methylat<br>Nmethyla             | ED AND<br>TED  | I         | GBM   | Adavosertib and<br>Temozolomide                                      | Radiation Therapy (RT)                                                 | USA                                      |

![](_page_25_Picture_1.jpeg)

## **CURRENT SOLUTION**

Inaccessibility of the sample ------ Non invasive test Tumour heterogeneity ------ Global tumor profile Tissue necrosis ------ Global tumor profile Only useful for treatment prediction------ -Diagnosis for treatment response

## **OUR PRODUCT**

- -Predict recurrence
- -Can easily be extended to other tumor
  - types with high % MGMT methylation

![](_page_25_Figure_12.jpeg)

![](_page_26_Picture_0.jpeg)

**IPR** protection

![](_page_27_Picture_1.jpeg)

Patent: European patent registration number EP19382299.6 Date of filing: 16 April 2019 Title: "Method for determining the percentage of methylation of the promoter of the gene O6-methylguanine-DNA methyltransferase (MGMT) in circulating exosomes" Ownership: FIBHULP (100%)

Other patents of the group:

Ibáñez de Cáceres I, Belda Iniesta C, Pernía Arias O, Perona Abellón R, Cortés Sempere M; inventors. FIBHULP, CSIC, UAM, Fundación Hospital de Madrid, assignees. Method for predicting the response to a treatment consisting of radiotherapy combined with cisplatin-based chemotherapy. P201330783, PCT/ES2014/070433, EP3006572, US20160122828; 2013 May 29. Licensed to IGEN BIOTECH.

Ibáñez de Cáceres I, Pernía Arias O, de Castro Carpeño J, Vera Puente O, Jiménez Hernández J, Perona Abellón R, Rojo Todo F, inventors; FIBHULP, CSIC, UAM, Instituto de Investigación Sanitaria FJD, assignees. Determination of methylation and miRNA levels in response to a platinum-based antitumor compound. P201530997, PCT/ES2016/070516; 2015 July 09.

Ibáñez de Cáceres I, de Castro Carpeño J, Vera Puente O, Pernía Arias O, Rodríguez Antolín C, González Muñoz VM, Martín Palma ME, Salgado Figueroa AM, inventors; FIBHULP, FIBIOHRC, assignees. MAFG as a potential therapeutic target to restore chemosensitivity in platinum-resistant cancer cells. EP17382610.8 (Publication Number pending), PCT/EP2018/068156; 2017 September 15.

Ibáñez de Cáceres I, de Castro Carpeño J, Jiménez Hernández J, Rodríguez Antolín C, Rodríguez Jiménez C, Rosas Alonso R, Cruz Castellanos P, Burdiel Herencia M, Pernía Arias O, Diestro Tejada MD, Esteban Rodríguez MI, inventors; FIBHULP, assignee. miR-151A-3p as an universal endogenous control for exosome cargo normalization. EP19382252.5 (Publication Number pending); 2019 April 05.

Ibáñez de Cáceres I, de Castro Carpeño J, Jiménez Hernández J, Rodríguez Antolín C, inventors; FIBHULP, assignee. Method for determining the response to treatment of a patient affected by non-small cell lung carcinoma (NSCLC). EP19382614.6 (Publication Number pending); 2019 July 19.

![](_page_28_Picture_1.jpeg)

## **Published data:**

1.-MAFG overexpression is associated with a **poor prognosis** in patients with non-small-cell lung cancer.

2.- MAFG overexpression induces CDDP resistance, targeting ROS.

![](_page_28_Figure_5.jpeg)

![](_page_29_Picture_0.jpeg)

![](_page_29_Figure_1.jpeg)

Aptamer 3. Prognostic value: 29 NSCLC patients (stages I/II)

![](_page_30_Picture_1.jpeg)

Theranostics 2017, Vol. 7, Issue 17

![](_page_31_Picture_1.jpeg)

**Research** Paper

# DNA Methylation of miR-7 is a Mechanism I Platinum Response through *MAFG* Overexpr Cancer Cells

Olga Vera<sup>1, 2\*</sup>, Julia Jimenez<sup>1, 2\*</sup>, Olga Pernia<sup>1, 2</sup>, Carlos Rodriguez-Antolin<sup>1, 2</sup>, Carmen Rodr Sanchez Cabo<sup>3</sup>, Javier Soto<sup>1, 2</sup>, Rocio Rosas<sup>1, 2</sup>, Sara Lopez-Magallon<sup>4</sup>, Isabel Esteban Rodri Federico Rojo<sup>7</sup>, Cristobal Belda<sup>8</sup>, Rafael Alvarez<sup>8</sup>, Jaime Valentin<sup>9</sup>, Javier Benitez<sup>10, 11</sup>, Rosan De Castro<sup>2⊠</sup>, Inmaculada Ibanez de Caceres<sup>1, 2⊠</sup>

#### De Casuo- , пипасціаца трапеz це Сасе

![](_page_31_Figure_6.jpeg)

MINISTERIO DE INDUSTRIA, ENERGIA Y TURISMO

![](_page_31_Picture_8.jpeg)

ficina Española

#### Acknowledgement of receipt

We hereby acknowledge receipt of your request for grant of a European patent as follows

Submission number 300247372

File No. to be used for EP17382610

Date of receipt 15 September 2017

Your reference 902 444

Applicant Fundación para la Investigación Biomédica del Hospital Universitario La Paz (FIBHULP)

Country ES

Title MAFG as a potential therapeutic target to restore chemosensitivity in platinum-resistant cancer cells

#### FULL TEXT ARTICLE

MAFG is a potential therapeutic target to restore chemosensitivity in cisplatin-resistant cancer cells increasing reactive oxygen species **a \*** 

#### Article in Press: Corrected Proof

Olga Vera-Puente, Carlos Rodriguez-Antolin, Ana Salgado-Figueroa, Patrycja Michalska, Olga Pernia Reid, Rocío Rosas, Alvaro Garcia-Guede, Silvia SacristÁn, Julia Jimenez, Isabel Esteban-Rodriguez Martin, Thomas A. Sellers, Rafael León, Víctor M. Gonzalez, Javier De Castro and Inmaculada Ibane Translational Research, Copyright © 2018 The Author(s)

Translational Research, Copyright @ 2018 The Author(s)

Martin, Thomas A. Sellers, Rafael León, Victor M. Gonzalez, Javier De Castro and Inmaculada Ibane, de Caceres

![](_page_31_Figure_24.jpeg)

#### Acknowledgement of receipt

We hereby acknowledge receipt of your request for the processing of an international application according to the Pater Cooperation Treaty as follows:

| Submission number      | 6487885                                                                                                      |
|------------------------|--------------------------------------------------------------------------------------------------------------|
| PCT application number | PCT/EP2018/068156                                                                                            |
| Date of receipt        | 04 July 2018                                                                                                 |
| Receiving Office       | European Patent Office, The Hague                                                                            |
| rour reference         | 903 350                                                                                                      |
| Applicant              | Fundación para la Investigación<br>Biomédica del. Hospital Universitario<br>La Paz (FIBHULP)                 |
| Number of applicants   | 2                                                                                                            |
| Country                | ES                                                                                                           |
| i the                  | MAFG as a potential therapeutic target<br>to restore chemosensitivity in platinum-<br>resistant cancer cells |

![](_page_32_Picture_1.jpeg)

The next steps to bring technology to market require more resources and infrastructure. Therefore the collaboration of industry is essential

Type of collaborations sought:

•Licensing-out type agreements

•Investor who finances the project validating with international collaborators (at present V.Quillien)

•Partner interested in getting involved in any of the different phases up to market launch

•co-development agreements, ...

Transfer actions carried out so far: Contact with an international company, which has shown interest in the technology (Advisory board)

![](_page_33_Picture_0.jpeg)

# Non-invasive method for diagnosis and monitoring of glioblastoma

# **MGMT** methylation

![](_page_33_Picture_3.jpeg)

Inmaculada Ibanez de Caceres Cancer Epigenetics Laboratory

![](_page_33_Picture_5.jpeg)