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Biology and Medicine as Big Data science
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~100PB High Energy Physics
Data Size . T
Biology & Astronomy
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Digital Twins view of Future Medicine

Anna is going fo
receive a Digital
Twin (or already has

Anna sees the
doctor to collect
personal lifestyle
and clinical data

one) to check her
health conditions

Virtual testing of
multiple possible
therapies on

Digital Twin

Qutcome:
Representation of
Impact and side-

effects of therapies

"

Simulation
cycle with the

Update of reference Model || Patient friendly presentation
and individual Digital Twin of simulation outcome

[v]

This is Anna

Creation or
update of
Digital Twin

Patient
centric
health care

Therapy and
analysis of
outcome —
Update of
Reference
Model

diagnostic and
other personal
data is fused with
Reference Model

Therapeutics, Preventive, Lifestyle
measure selection by Anna and doctor
based on outcome of simulation cycle
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g performance medicine: the convergence of
human and artificial intelligence

EricJ. Topol

Human driver monitors environment

0 1
No Driver
automation assistance

The absence of any
assistive features
such as adaptive
cruise control.

Systems that help
drivers maintain
speed or stay in
lane but leave the
driver in control.

Humans and machine doctors
0 1
\

~ ~

Department of Molecular Medicine, Scripps Research, La Jolla,

2

Partial
automation

The combination of
automatic speed

and steering
contro—for example,
cruise control and
lane keeping.

System monitors environment

3 4
Conditional High
automation automation

Automated systems
that drive and
monitor the
environment but
rely on a human
driver for backup.

Automated systems
that do everything—
no human backup
required—Dbut only
in limited
circumstances.

Unlikely

NATURE MEDICINE | VOL 25 | JANUARY 2019 | 44-56 |

5

Full
automation

The true electronic
chauffeur: retains
full vehicle control,
needs no human
backup, and drives
in all conditions.




.. Datos muy especiales

Complejidad asociada a experimentos y
muestras (meta-informacion)
Heterogeneidad propia de |la biologia
Confidencialidad

Propiedad y gestion de los datos



Genomes
Ensembl, Ensembl

Genomes, EGA

Gene expression
ArrayExnress

InterPro

Protein families,
motifs and domains

Protein interactions
IntAct

Pathways
Reactom

Literature and ontologies
CitExplore, GO

Nucleotide sequence
EMBL-Bank

Systems
BioModels

Proteomes
UniProt, PRIDE

Protein structure
PDBe

Chemical entities
ChEBI, ChEMBL

Large Scale
Genomics
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projects

The International Cancer Genome Consortium®
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! Consortium Whole-gemrne sequencing identifies recurrent
in chronic lymphocytic leukaemia
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International network of cancer genome
projects

The International Cancer Genome Consortium®
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Epigenomic analysis detects widespread gene-body DNA
hypomethylation in chronic lymphocytic leukemia
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Exome sequencing identifies recurrent mutations of the
splicing factor SF387 gene in chronic lymphocytic
leukemia
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Non-coding recurrent mutations in o s
chronic lymphocytic leukaemia
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Eur J Haematol. 2016 Aug;97(2):175-82. doi: 10.1111/ejh.12700. Epub 2015 Dec 17.

LPL gene expression is associated with poor prognosis in CLL and closely related to NOTCH1
mutations.

The splicing modulator sudemycin induces a specific antitumor response and cooperates with
ibrutinib in chronic lymphocytic leukemia.

Lopez-Otin ct, Camp_uiz. Colomer D'2.

Leukamia, 2015 Jan;29(1):96-106. doi: 10.10380eu.2014.143. Epub 2014 Apr 30.

The y-secretase inhibitor PF-03084014 combined with fludarabine antagonizes migration, invasion
and angiogenesis in NOTCH1-mutated CLL cells.

Lépez-Guerra M', Xargay-Torrent S', Rosich L', Montraveta A', Roldén J7, Matas-Céspedes A', Villamor N2, Aymerich M2, Lépez-Otin C3, Pérez-
Galan P, Roué G', Campo E?, Colomer D%,

Blood. 2016 Apr 28;127(17):2122-30. doi: 10.1182/blood-2015-07-659144. Epub 2016 Feb 2.

Clinical impact of clonal and subclonal TP53, SF3B1, BIRC3, NOTCH1, and ATM mutations in
chronic lymphocytic leukemia.
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Geres Chromosomes Cancer. 2013 Oct;52(10):920-7. doi: 10.1002/g Puente XS*, Lépez-Otin C”, Enjuanes A®, Campo E™™.

Clonal evolution in chronic lymphocytic leukemia: analysis of correlations with IGHV mutational
status, NOTCH1 mutations and clinical significance.

Colomer D, Pareira A, Cobo F, Ldpez-Guillermo A, Campo E, Carrié A.
Blood. 2016 Mar 24;127(12):1611-3. doi: 10.1182/blood-2015-10-678490. Epub 2016 Feb 4.
Clinical impact of MYD88 mutations in chronic lymphocytic leukemia.
Martinez-Trillos A", Navarro AZ, Aymerich M3, Delgado J3, Lépez-Guillermo A3, Campo E3, Villamor N3.
Blood. 2014 Jun 12;123(24):3790-6. doi: 10.1182/blood-2013-12-543306. Epub 2014 Apr 29, @ Author infarmatinn

Mutations in TLR/MYD88 pathway identify a subset of young chronic lymphocytic leukemia
patients with favorable outcome.

Hernandez-Rivas JM®, Colado EB, Raydén C_ﬁ, Payer ARS, Terol MJ7, Navarro B, Quesada V8, Puente XS8, Rozman C¥, Lépez-Otin c8, Cam;ﬁm,
Lépez-Guillermo A“, Villamor NT.

Blood. 2015 Jul 9;126(2):195-202. doi: 10.1182/blood-2014-10-604959, Epub 2015 Jun 1.

Mutations in CHD2 cause defective association with active chromatin in chronic lymphocytic
leukemia.
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Personalized Medicine schema

HiC

Epigenomics

Complete
Exomes genomes

Biomedical
repositories
of Data and
Methods

Metagenomes Single Cells

Research Interest
Bioinformatics

fRfiastriettire Practical utility in the

clinic

Computational

Computational Infrastructure

Methods Mining EHR B Social Media
il e Viedical Imaging.

Computing) ther Healtt

- Medical devices

Epidemiology
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ELIXIR:
European Bioinformatics Infrastructure

ELIXIR: The Spanish

Institute of Bioinformatics
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ELIXIR Human genomics platform

Generate Archive, discover, manage

Diverse data from Store, access and share data of multiple
diverse providers/ types and origin
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Transbionet network (INB hosted)

1IS Biodonostia

BELL IRB Barcelona
IGTP
IRB Lleida IRS)D
IMIM
VHIR

Core Facilities at
Biomedical Institutes

Groups at Health Research
Institutes certified by the ISCIII

Groups at Health Research
Institutes (Observers)
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General Purpose

11.15 Pflops/s

3,456 nodes of
Intel Xeon v5
processors

14PB storage

22" in the World
6t in Europe




If you want to know more, see...
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Emerging
> Technologies,
> for evaluation
?{; of 2020
= Exascale
systems

3 systems, each
of more than 0,5

= Pflops/s

= with ARMvS.
KNH,

= &

~° Power9+NVIDIA,

1.5 Pflops/s




Llega StarLife, un superordenador
exclusivo para ciencias de la vida

- El Barcelona Supercomputing Center refuerza su apuesta estratégica por la

d < Lj. c
.. . . qs nr
investigacion biomédica ﬁ L ik

A S

A LAY \

Se pone en marcha StarLlfp una nueva infraestructura informatica para impulsar la
investigacion biomédica (Xavier Cervera)

El sistema prestara servicio a investigadores de todo el mundo a través del Archivo
Europeo de Genomas y Fenomas (Xavier Cervera)

&.wnmne
Center



s e eeas 7 research groups
Understanding living 5 Support Units (including INB)

organisms by theoretical and
computational methods

T 120 scientists/engineers by
achine Learning
S X 2020

Computational /SIS | .+, 27\ Protein and
genomics ‘ E \ i= \ | drug modeling
Personalized ¥
Medicine

Evaluation of
social impact

Bio-
Infrastructure



BSC technical strategy for Personalized Medicine

Genome OMIC analysis Text and Data Molecular Remote Medical Organ and

Analysis (Epi,- (proteo-, Mining Simulations Dewvices and Image system
meta- metabolo- (Scientific (mutant continuous simulation
RNASeq-, full and others literature, predict, drug monitoring.
genomes,..) omics) Med resist, Virtual
guidelines, Screen, ..)
EMR/ HER , ...)

Data Models and Algorithms

{approximate computing- reduced precision, adaptive layers, DL/Graph Analytics, ...}
S [ S| IS | S [ —

Programming models and runtimes
(PyCOMPSs, interoperability current approaches)
1 ||

. /m. @
Hardware acceleration of DL workloads

(novel architectures for NN, FPGA acceleration)
[ PES—— | A— S {I—  [N— _ PE——

Data Platforms + standards
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Personalized Medicine schema

Epigenomics HiC
Complete
Exomes genomes
Biomedical
repositories :
R Metagenomes Single Cells
Methods

Research Interest

Bioinformatics : N
Practical utility in the

Infrastructure =
clinic
Computational T N "
Methods NIpInE RN . Social Media
(ML, Cognitive Medical Imaging

Computing) Other Health

ata (papers, - Medical devices

Epidemiology
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NLP and Text Mining

Unstructured data

® (Impllclt knowledge) .
= ; Document Information Document
% Standardization retrieval categﬂrizatiﬂn
lé
% Named
= Entity
g Recognition
=
T
Information
Extraction

Structured data
(Explicit knowledge)

% Entity

g Grounding
=

2

E Concept

@ normalization
% Knowledge Data Semantic

S Discovery Integration metadata
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Plan TL

Plan de Impulso de las
Tecnologias del Lenguaje
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Plataforma TL componentes
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Representacion, deployment o s =8
Electronica formatos (BioC, XML, Servicios Y oo
JSON) tipologia w E ptabilicad,
. Extension,
Estructurs/arquitectura documental Exportar
Documentos Plataforma Componentes visualizacion,
integracion
Especifices del dominic / documento
Aplicaciones,

Modelos de
lenguaje

tipologia de
usuarios,
manuales

Fichas
tecnicas

medicamentos

Catalogo de componentes, metadatos, tipado entrade/salida, dependencias

Registro de componentes Plan TL

Catalogo de workflows: pipelines (flujos de processmientc) basades en casos deuso

Registro de workflows Plan TL

Terminclogiss, antologiss.
recurscs lexicas

Infraestructura
linguis

Modelo/esquema de
ejecucion, editor de
anotacion

Publicaciones - . Coditicacién (CIE-10),

cientificas Guias anotacion gestion/extraccion
; de conocimiento,
i Testeo de ¥ workflows calidad Deteccién de eventos/

Otros Corpora efectos
Framework de evaluacion Plan TL e, e
textosclinicos
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Patentes evaluacion
Ensayos
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nature !
physics

PERSPECTIVE

https://doi.org/10.1038/s41567-018-0342-2
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Digital Twins view of Future Medicine

Anna is going fo
receive a Digital
Twin (or already has
one) to check her
health conditions

Anna sees the

doctor to collect
personal lifestyle
and clinical data

Virtual testing of
multiple possible
therapies on

Digital Twin

Qutcome:
Representation of
Impact and side-

effects of therapies

"

Creation or
update of
Digital Twin

Patient
centric Simulation
health care cycle with the

Therapy and
analysis of
outcome —
Update of
Reference
Model

diagnostic and
other personal
data is fused with
Reference Model

Update of reference Model || Patient friendly presentation
and individual Digital Twin of simulation outcome

Therapeutics, Preventive, Lifestyle
measure selection by Anna and doctor
based on outcome of simulation cycle
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A call for deep-learning healthcare

Here we argue that now is the time to create smarter healthcare systems in which the best treatment decisions are
computationally learned from electronic health record data by deep-learning methodologies.

BeauNorgeot, BenjaminS. Glicksberg and Atul J. Butte NATURE MEDICINE | VOL 25 | JANUARY 2019 | 14-18 |

Harmonization and preprocessing

[

1. Digital knowledge base I 2. Artificial Intelligence analyses
[ I

a m '@

» Computer-aided
diagnosis and
+ Patient demographic, treatment selection
personal, and clinical data
+ Past clinical decisions
and outcomes

Deep-Learning
Healthcare System

Add data - — -Synthesize
and outcomes results for
to knowledge base recommendation

3. Clinical decision support

¢ Discussion of

- O T o— &:ﬁ recommendations
= between patient
Clinical decision and clinician



Nearly every other industry uses data on
previous actions and outcomes to enable
smarter ongoing choices. Amazon targets
product recommendations to a user on
the basis of similar customers’ shopping
patterns. Google updates its search results
using the outcomes of previous searches as
a basis. Waze uses information from drivers
traveling similar routes to optimize the
directions it provides. Why is medicine, as
an industry, still left out?

birth.htm). But the US medical system is a
competitive one, meaning that competing
health systems, payers, and pharmaceutical
companies are not incentevized to fully
share clinical data, pricing of services or
medications, and costs of the delivered care.

While EHRs have known challenges'?,
they now represent a patient’s legal medical
record and are complete enough to enable
a new physician to completely take over
the care of a patient. This data is perhaps
among the most expensive in the US, given
that physicians are paid to enter much of it.
Of course, EHR data must only be used in
manners that are safe and respectful to the
patients from which they are obtained, but it

@=—

It is time to safely bring huge medical
data repositories and advanced learning
algorithms together with physicians to make
a deep-learning healthcare system. Deep
learning, the newest iteration of machine-
learning methodologies, is now performing
at state-of-the-art levels in previously
difficult tasks, including image analysis,
language processing, information retrieval,
and forecasting. Deep learning is well suited
for medical data as it can identify patterns

input-feature engineering. Current successes
have shown performance that meets or

importantly, these systems can

real-time within or across entire hospital
systems. We propose that future physicians
will be armed with insights from models

continuously trained and updated on real-
world clinical data to make more accurate
diagnoses and individually optimized

learning models could be shared between
hospitals without the privacy risks of
sharlng patlent data, there is nearly hmltless

outcomes of diverse physicians treating
diverse patients (Fig. 1).
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A call for deep-learning healthcare

Here we argue that now is the time to create smarter healthcare systems in which the best treatment decisions are
computationally learned from electronic health record data by deep-learning methodologies.

Beau Norgeot, Benjamin S. Glicksberg and Atul ). Butte

wo m;r:d:‘hl:mfmm-num:nhmlugy

revolutions are curr e

medicine. Electronic health r:mm‘ls
(EHRs) are capturing the thoughts and
orders of the best-trained physicians and
images and outcomes from their treated
paticnts, and advances in machine learning
are beginning to supplement clinical
medicine. But breakthroughs still remain
fully unrealized because these revolutions
are siloed. While there arc raw materials
from which current actions and outcomes.
in medicine could be learned, they are still
not systematically utilized to improve the
practice of medicine.

Nearly every other industry uses data on
previous actions and outcomes to cnable
smarter ongoing choices. Amazon targets
product recommendations to s uscr on
the basis of similar customers’ shopping
patterns. Google updales tssearch resls

using the outcomes of previous
abﬁmWez:ummfnn‘mhmﬁm‘ndnvm

traveling similar routcs to op

Fig. 1| A deep-leaming
system is shown.

directions it pravides. Why um:djﬂnc.as
an industry, still lft out?

The roadblocks to bringing medicine
into the data-driven era arc operational
and cultural. Many have written about
inefficiencies in the US medical system
in regard to rising healthcarc spending
(http=//apps.who.int/gho/data/node.
main. GHEDCHEGDPSHA2011) and the
challenges in improving quality (hteps:/
data.occd.org/healthstat/Tife- expectancy-at-
birth htm). But the US medical system is a
competitive one. meaning that competing
health.

will be a significant regret if this data is niot
used to improve the practice of medicine.
_ Over 10 years ago. Lymn Etheredge!

in sparse, noisy data and requires little
input-feature en; Current successes
have shown performance that meets or

System, wherchy millions of EHRs could
be used to inform medical practice and
‘policy. But these visionaries were proposing
a system in which physicians mediate

the learning. Now with ncarly 80% of
medication orders captured d:nmnimlly.
morc than 1.7 bilon per year

of experts but perhaps more
importantly,these sysiems can be run in
real-time within or across entire hospital
ﬂw:pmpouﬂnlﬁﬁnphmlﬂ
will be armed with insights from

tracked’, and 55% of hospital

There is a significant room for improvement.
and potential to better use the data that are
available.

While EHRs have known challenges™,
they now represent a patient’s legal medical
record and are complete enough to enable.
2 new physician to completely take over
the care of a paticnt. This data is perhap
among the most expensive in the US, gwm
that physicians are paid to enter much of it.
OF course, EHR data must only be used in
‘manners that are safe and the

il way to practice
mcdicine? Imagine ten physicians faccd
clinical conundrum (choice
A.B, or C) in onc paticnt. If these ten were

g EHRs (https://dashb Is there
healthit gov/qui pages/FIG-Hospitals-

EHR-Incentive-Programs.php), we can with a single.

eavision computer systems that learn how to

improve the medical system by themselves.  provided with the maximum possible

It is lime Lo safely bring huge medical
data repositorics and advanced learning
algorithms together with physicians to make
& decp-lcarning healthcare system. Decp
the newest iteration of machine-

learning methodologics, is now performing
at state-of-the-art levels in previously
difficult tasks, including

language processing, i

paticnts from which they arc obtaincd, but it

Decp learning is well suited
for medical data as it can identify pattcrns

amount of information sbout a paticnt

in a clear format, from ical cxam
results to wearables to the patient’s own.
preferences for care, the world's biomedical
literature and abstracts, and data on similar
paticnts, in any desired format, should all
ten physicians reach the exact same choice.
for this clinical decision? We know today
that they probably would not, but should
they? Ifthe answer is yes, then medicine is
fundamentally machine learnable.
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Cardiologist-level arrhythmia detection and
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IMI Lesson | am learning (1/2)

Symmetry of the problems between companies and academia
- information silos in departments or administrations
- difficult to adhere to long term projects
- limited capacity to adapt to new technologies

Data Management is Key
- Federation for searches and execution (beacons and containers)
- Encryption (i.e. searches in encrypted data)
- Trusted partners as mediators
- FAIR / standards to facilitate the internal operations

Thrust (has a lot to do with exploration versus stability)
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IMI Lesson | am learning (2/2)

New calls
- Data management issues
- Analysis platforms integrating OMICS and EHR (others)

(there are many call - projects on-going)
- Al/ML applications on diverse data sets and applications

New projects should be more challenging and transformative.

=
=
=
S
=
Ll
&5
L
—
S
S
<

DE LAS PLATAFORMAS TECNOLOGICAS

DE INVESTIGACION BIOMEDICA




Bsrcelonas
Suprreompating
Crmeer

e s, T




Dario Garcia-Gasulla, Ferran Pares, Armand Vilalta

BSC (High Performance Al) |
Roland Mathis, Matteo Manica

IBM (Computational systems biology)
Vera Pancaldi CRCT,
Toulouse
Ignacio Martin-Subero

IDIBAPS, Barcelona
Enrique Carrillo de Santa Pau IMDEA, Madrid

David Juan Sopefa IBE, -
Barcelona EXCELENCIA
: SEVERO
Felipe Were _ OCHOA

CNIC, Madrid
Biola Javierre 1JC,
>\ ggep Learnlng Center p i
33C, Barcelona . j -

“Ronce de Leon, AIba‘terre
Krallinger, Jon SER&MED MINECO

dv,i,

— eTRANSAFE
UBifgﬁB&rcew:?g;rijez oPENMINDTED BioCreAtlvE 5 —S
performance . Gompuationa Excellerate- efpta |G imy
raricia
Intelligence lzﬁtfé;s \ELl.).“R” *_

= pheniin = INB

Computational biology group (BSC)

- BLPRINT  TOX

“Comorbidity networks”

fellows Alfons_Valenci ,
3



Bsrcelonas
Suprreompating
Crmeer

e s, T




CRITICAL ASSESSMENT OF TECHNIQUES

FOR PROTEIN STRUCTURE PREDICTION Predicting protein structure from the sequence is one
of the fundamental problems in molecular biology.

It is the key to the prediction of the consequences of
mutations in human diseases and to drug design

The Guardian B signin - rgy

Subscrib & | he .
= Guardian

Opinion ' Sport Culture Lifestyle e

K Sclence Cities Global development Football Tech Business Environment Maore

Rivie NI
DECEMBER 1-4, 2018

Google's DeepMind predicts 3D shapes of

proteins ' |

Al program’s und ding of p ins could usher in new era B

of medical progress F
-r

On its first foray into the
[ competition, AlphaFold topped a
table of 98 entrants, predicting the

v’é Nico Callewaert @NicoCallewaert - 11h “
Y| Probably my nomination for basic molecular science advance of 2018, need to most accurate structure for 25 out of
i
% see a bit more methods details but results in blinded CASP13 test clearly i i
impressive. deepmind.com/blog/alphafold/ 43 prOtE]IlS, CDlTlpﬂrE'd WIth three
out of 43 for the second placed team
L e 2T in the same category.



CRITICAL ASSESSMENT OF TECHMIQUES

FOR PROTEN STRUCTURE PRETHCTION
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Data mining: Complex Networks
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g Data mining: Complex Networks
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Data mining: Complex Networks
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Data mining: Complex Networks

Melanoma Content Analytics graph
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g Data mining: Complex Networks

Melanoma Content Analytics graph
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[1916958] [ He presented with BNSPHAGE and weight loss.

We present one case of primary malignant melanoma of the esophagus in a 76-year-old woman who reported the symptoms of PNSBHEBI and recent weight loss; the
radiography showed a large polypoid mass filling the entire lower half of the esophagus, dark brown-black in the endoscopy.

|22?1 301

| 3792282 | | we report the case of a 74-year-old woman who was admitted to hospital with progressive [NSRRBEE.
[2964453] [t may cause significant local symptoms such as airway obstruction and DYSPHAGIA. and, in some cases, may represent the initial manifestation of disseminated disease
[8493638] [ A 75 year old man with an eight month nistory of DYSEHAGIA and weight loss underwent i fora ive pericardial effusion

[2269967] [ A 48-year-old woman presented with a 6-month history of BFSPHAIIE. often associated with retrosternal CHESTIPAIN.
|18773432| | The patient is a 76-year-old male, who presented in the emergency room with bilateral CHESTIPAIN exacerbated by inspiration.
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8806514l | CASE PRESENTATION: A progressive severe DYSPHEGHA 2s¢ is reported induced by a melanoma of unknown origin (metastatic to a posterior mediastinal lymph node),
[..]INTRODUCTION: We describe an original case of progressive severe [ISBHBGIE caused by a posterior mediastinal metastatic melanoma of unknown origin.
|19212291| | CASE REPORT We report an original observation of an 82-year-old man with a pulmonary nodule presenting with GHESTIPAIN.
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Improving the interpretation of standard pathway analysis
by linking ontological annotations
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