3 de julio de 2025

Circular RNA-based therapy for treating incurable diseases

Miriam Corredor, PhD CEO

MEDICAMENTOS INNOVADORES Plataforma Tecnológica Española

farmaindustria

Content

- 1. The Institution: NoctuRNA Therapeutics
- 2. The Product: circular RNAs
 - a) Target Indications
 - b) Innovative mechanisms of action
 - c) Differential features facing the market
 - d) Current status of development
 - e) IPR protection
 - f) Pitfalls & Risks to be considered
- 3. Partnering Opportunities

Advisor\

Board

1. The Institution: NoctuRNA Therapeutics

Circular RNA-based therapy for treating incurable diseases Spin-off from

TEAM

Miriam Corredor, PhD/MBI CEO & cofounder +10y experience in the biotech

entrepreneurial ecosystem Management and leadership skills

THERAPEUTICS

Marc Talló, PhD CSO & cofounder RNA Biology and circRNA expert

Ivan Dotu, PhD VP Research & cofounder Expert in RNA structure and

Monica Mendoza, PhD CNS and Mol. Biology expert

Researcher

Flor Alonso, PhD Researcher circRNA production and molecular biology expert

computational design of synthetic RNAs

Juana Díez Anton, PhD Scientific advisor & cofounder Full Professor Microbiology, UPF

Amadís Pagès, PhD

as a CEO. Tech transfer expert

Expert in virus biology and antiviral treatments 2017 ICREA Academia Prize Research Excellence

Entrepreneur in the Biotech sector with 7 years

Business advisor & cofounder

Juan Pablo Horcajada, PhD, MD

Coordinator of the Neuromuscular Diseases area at Hospital del Mar (Barcelona)

Ajuntament de Barcelona

Women Startup Challenge 2023

GOBIERNO

eл

enisa

FINANCIADA

MINISTERIO DE INDUSTRIA Y TURISMO

POR ENISA

nature reviews genetics

Universitat

DE CIENCIA, INNOVACIÓ Y UNIVERSIDADES

enisa

AliraHealth

Startup Support Program 2024 2024 PARTICIPANTS

nOctuRNA

Pompeu Fabra Barcelona

AGENCIA ESTATAL DE INVESTIGACIÓN

CERTIFICADA COMO EMPRESA

MERGENTE

MINISTERIO

DE INDUSTRIA

TURISMO

telomer

upt

Financed or recognized by:

ACCIÓ

Generalitat

Activa Barcelona

de Catalunya

2. The Product: Target Indications

THERAPEUTICS

2. The Product: circular RNAs & Innovative MoA

We use circular RNAs (circRNA) that disrupt pathogenic RNA secondary structures

2. The Product: circular RNAs & Innovative MoA

DISRUPTIVE MODE OF ACTION

(using Steinert disease as an example)

2. The Product: Differential features

2. The Product: Differential features

- ✓ 1st in CLASS therapy
- ✓ HIGH STABILITY due to circular RNA nature
- ✓ As antivirals: increased **DIFFICULTY OF RESISTANCE STRAINS**, applicable to **multiple viral**

diseases, BROAD SPECTRUM activity

- ✓ COMPLETE REDUCTION OF INFECTION in 48h
- ✓ Novel approach to attack **undruggable targets** (i.e. genetic diseases)
- ✓ Optimized **LOW-COST PRODUCTION** of circRNA
- ✓ ULTRA FAST DEVELOPMENT Effective Lead candidates obtained in 3-4 weeks

XXV Encuentro de Cooperación Farma-Biotech

2. The Product: Differential features

Steinert' competitors (DM1):

There is currently no company with a drug on the market

Some candidates for DM1 in clinical phases aim to increase the amount of unsequestered MBNL1 by modulating the expression of a gene. In contrast, our circRNA disrupts the structure of DMPK, which sequesters MBNL1, without affecting the expression of any other gene.

This makes it a much safer therapy.

COMPANY	PROGRAM/ LEAD CANDIDATE	MODALITY	DM SUBTYPE	PRE- CLINICAL	PHASE 1	PHASE 2	PHASE 3	DRUG TARGET/ MECHANISM
AMO Pharma Ltd	Tideglusib	Small Molecule	CDM	€AMO				Glycogen synthase kinase 3 beta (GSK38)
Harmony Biosciences	Pitolisant	Small Molecule	DM1	HB HARMONY				Histamine-3 receptor (H3R)
Lupin Neurosciences	Mexiletine	Small Molecule	DM1 / DM2	NEUPOSCENCES			>	Sodium Channels
Avidity Biosciences	AOC 1001	Antibody Conjugated Oligonucleotide	DM1			>		DMPK
Dyne Therapeutics	Dyne 101	Antibody Fragment Conjugated Antisense Oligonucleotide	DM1	Y Dyne				DMPK
Vertex	VX-670	Peptide Conjugated Oligonucleotide	DM1	VERTEX	>			DMPK
PepGen	PGN-EDODM1	Peptide Conjugated Antisense Oligonucleotide	DM1	PepGen	>			DMPK
Arrowhead Pharmaceuticals	ARO-DM1	Investigational RNA interference (RNAi) Therapeutic	DM1		>			r(CUG) of DMPK
ARTHEx Biotech	ATX-01	Antisense microRNA Oligonucleotide	DM1 / DM2	ARTHEX	>			MBNL and DMPK via miR-23b
Expansion Therapeutics	DM1 (CUG)	Small Molecule	DM1	EXPANSION				r(CUG) of DMPK
Juvena Therapeutics	JUV-161	Stem Cell-Secreted Proteins	DM1	Juvers				-
Rgenta Therapeutics	PMS1	Small Molecule	DM1	Rgenta				r(CUG) of DMPK
Sanofi		miRNA Technology in Adeno- Associated Virus		sanofi				DMPK
Astellas Gene Therapies	AT466	Adeno-Associated Viral Antisense	DM1	*astellas				DMPK
GrittGene Therapeutics		-	DM2					-
Enzerna Biosciences		Artificial Site Specific RNA Endonucleases (ASREs)	DM1	-				r(CUG) of DMPK
Design Therapeutics		Gene Targeting Chimera Small Molecule	DM1	DRESIGN				r(CUG) of DMPK
Dewpoint Therapeutics		Biomolecular Condensates	DM1	dewpoint _x				DMPK
Kate Therapeutics			DM1	KATE				-
Prime Medicine				prime				
Denali Therapeutics		-	DM1					DMPK

Main actors/competitors in the market for Myotonic Dystrophy and their pipeline. Adapted and modified from Myotonic Dystrophy Foundation. CDM: Congenital Myotonic Dystrophy, DM1: Myotonic dystrophy type 1 (Steinert Disease),DM2: Myotonic dystrophy type 2

2. The Product: Differential features

ALS competitors:

- > Biogen (USA) leads with Tofersen, an ASO targeting SOD1 mutations. It received FDA accelerated approval.
- > Ionis Pharmaceuticals, a pioneer in ASO development, collaborates with Biogen and others on ALS programs: BIIB078 TERMINATED
- > Wave Life Sciences develops stereopure ASOs with clinical-stage candidates for CNS disorders, including ALS: WVE-004 TERMINATED
- > Amylyx Pharmaceuticals received US and Canada approval for Relyvrio (a non-genetic small molecule combo)
- > Treeay (Netherlands) is developing oral therapies for ALS.
- > QurAwlis (USA) and similar startups focus on molecular subtype-specific approaches.

C9ALS and ASO Limitations

In **C9ALS**, ASOs targeting mutant sense transcripts reduce RNA foci and dipeptide repeat proteins (DPRs) **in preclinical models**. However, current ASOs only target the **sense strand**, allowing antisense-derived DPRs and RNA foci to persist.

This limitation contributed to the termination of BIIB078 and WVE-004 (2022–2023), due to limited efficacy despite early safety and tolerability.

Need for innovative therapies targeting both sense and antisense transcripts for meaningful clinical impact

2. The Product: Development Status

STEINERT DISEASE (DM1)

In vitro EFFICACY studies

Results of splicing correction in a patient cell line

In vivo EFFICACY studies

Drosophila Model:

- > Treatment with a specific circRNA improved 83% of flies (25/30)
- > Improvement measured by phenotypic changes in eyes expressing pathological RNA

Mice Model experiments ongoing

NEURODEGENERATIVE DISEASES

Α

U

CircRNA candidates for other neurodegenerative diseases (ALS, FTD, Huntington's disease, SCA8, FXTAS) have been successfully validated in vitro

ALS in vivo Biodistribution / Toxicity studies

circALS1 molecules are detected 30 days after i.c.v injection

Maximum dose determined without toxicity throughout the 30 days

2. The Product: Development Status

INFECTIOUS DISEASES

Experimental results of dengue (DENV), west Nile virus (WNV), SARS-CoV-2, hepatitis C (HCV) and the broad-spectrum circ-RNA for DENV and WNV in cell culture

EFFICACY in cell culture after 48 hours

BROAD-SPECTRUM

90-100% of effectiveness in cell culture

IN VIVO EFFICACY STUDIES of the SARS-CoV-2 circRNA

90% viral load reduction

2. The Product: IPR Protection

2. The Product: Pitfalls & Risks

1) Financial Constraints:

One of the primary challenges is securing sufficient funding to support the development of all our research lines. This is why we have prioritized our projects to focus resources on the most promising candidates. We'll combine public and private funding as this is key for the continued development and expansion of our platform.

2) Technological development:

Our design platform for circRNA is built to automatically generate a set of candidates targeting one or more specific RNA secondary structures. However, due to the complexity and specificity of certain targets, **full automation may not always be possible**. In such cases, manual intervention may be required, involving multiple steps and iterative redesigns, which could slow down the scalability of our platform.

Developing an effective **delivery system** for circRNAs tailored to each specific disease is another critical hurdle. To date, we have tested various lipid nanoparticles (LNPs) for encapsulation, and ongoing trials will determine if further optimization is necessary.

3) Regulatory Challenges:

Currently, there are no approved circRNAs by regulatory agencies, and therefore no specific guidelines exist. This makes it essential to engage with regulatory bodies to pave the way for future clinical trial approvals. Nocturna's circRNAs has been classified as **Gene Therapy by the Committee for Advanced Therapies** and we also achieved the SME classification by the EMA.

3. Partnering Opportunities

BUSINESS MODEL: LICENSE OF DIFFERENT ASSETS

circRNAs production method

Licencing of our circRNA production protocol to an RNA MANUFACTURER

- Novel IVT based circRNA production
- HIGH-YIELD (>85%) production

GMP implementation and scalable

SHORT TERM REVENUES

We are open to collaboration on our current pipeline or new Project proposals

nocturnada Therapeutics

Revolutionizing treatment: synthetic circular RNA strategy for neurodegenerative and infectious diseases

Miriam Corredor, PhD CEO <u>mcorredor@nocturnatx.com</u> <u>www.nocturnatx.com</u>