CM-352: a new, potent and safe molecule for the prevention and treatment of haemorrhage
Outline

• Institution: CIMA

• Project

• Partnering Opportunities
The Center for Applied Medical Research (CIMA) is a private non-profit biomedical research institution of the University of Navarra, based in Pamplona, Spain.

CIMA carries out high quality scientific work with a strong translational focus.
CIMA. De-risking Drug Discovery Process

• Target Rich
 - BioBank
 - Patient Data

• Translational Medicine
 Bidirectional data analysis to identify and/or prioritize clinically relevant molecular targets or pathways.

• Basic Science
 Advanced basic research to decipher MoA underlying clinical evidence.
 Implementation of in-vitro or/and in-vivo assays for unequivocal assessment: PoC

• Drug Discovery
 Proprietary tool(s), biologics or/and small molecules, for in-vivo PoC: efficacy & safety

CUN
Medical Center

CIMA
Translating Basic Science

Target ID and Validation
Basic Biological Research
- siRNA, MoA, KO mice, peptides, …
- Cellular & Animal Models

Drug Discovery

Gene Therapy
Molecular Therapeutics

Drug Discovery & Development
Clinical
FDA

Pharmaceutical Industry

Novel Antifibrinolytic Agents

XIV Encuentro de Cooperación FarmaIndustria
Madrid, November 2015
CIMA. De-risking Drug Discovery Process

• Expected Deliverables:
 i. Novel Target / MoA
 ii. In-vitro & In-vivo PoC with “drug-like” molecules or biologics: Efficacy & Safety → Advanced Lead(s)
 iii. Lead(s) with proprietary IP (Availability for further development)
 iv. “Know-how”
Projects Overview

<table>
<thead>
<tr>
<th>Target(s)</th>
<th>Therapeutic effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3 & MMP10</td>
<td>Anti-fibrinolysis</td>
</tr>
<tr>
<td>HDAC & PDE5</td>
<td>Alzheimer’s Disease</td>
</tr>
<tr>
<td>G9a & DNMT</td>
<td>Anti-neoplastic</td>
</tr>
<tr>
<td>Gene7</td>
<td>Wilson’s Disease</td>
</tr>
<tr>
<td>Gene70</td>
<td>Anti-coagulant</td>
</tr>
</tbody>
</table>

XIV Encuentro de Cooperación Farmaindustria
Madrid, November 2015
Projects Overview

<table>
<thead>
<tr>
<th>Target(s)</th>
<th>Therapeutic effect</th>
<th>Target Validation</th>
<th>Hit Patent (IP)</th>
<th>Hit Explosion in-vitro assays</th>
<th>ADMET/PK</th>
<th>Lead ID In-Vivo Efficacy</th>
<th>Business Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3 & MMP10</td>
<td>Anti-fibrinolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC & PDE5</td>
<td>Alzheimer’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9a & DNMT</td>
<td>Anti-neoplastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene7</td>
<td>Wilson’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene70</td>
<td>Anti-coagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Projects Overview

<table>
<thead>
<tr>
<th>Target(s)</th>
<th>Therapeutic effect</th>
<th>Target Validation</th>
<th>Hit Patent (IP)</th>
<th>Hit Explosion in-vitro assays</th>
<th>ADMET/PK</th>
<th>Lead ID In-Vivo Efficacy</th>
<th>Business Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3 & MMP10</td>
<td>Anti-fibrinolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC & PDE5</td>
<td>Alzheimer’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9a & DNMT</td>
<td>Anti-neoplastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene7</td>
<td>Wilson’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene70</td>
<td>Anti-coagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Anti-neoplastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Anti-fibrotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Probes identified (IP and no IP) To Validate Targets and/or MoA

IP & “validated” targets
Projects Overview

<table>
<thead>
<tr>
<th>Target(s)</th>
<th>Therapeutic effect</th>
<th>Target Validation</th>
<th>Hit Patent (IP)</th>
<th>Hit Explosion in-vitro assays</th>
<th>ADMET/PK</th>
<th>Lead ID In-Vivo Efficacy</th>
<th>Business Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3 & MMP10</td>
<td>Anti-fibrinolysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HDAC & PDE5</td>
<td>Alzheimer’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>G9a & DNMT</td>
<td>Anti-neoplastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene7</td>
<td>Wilson’s Disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gene70</td>
<td>Anti-coagulant</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>Anti-neoplastic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>Anti-fibrotic</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>Anti-neoplastic</td>
<td></td>
<td>Assay established</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>Immune regulation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>Huntington</td>
<td></td>
<td>Assay to be defined</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Chemical Probes identified (IP and no IP) To Validate Targets and/or MoA

IP & “validated” targets
Outline

• Institution: CIMA

• Project

• Partnering Opportunities
Antihemorrhagic Agents: Current Standard of Care

HAEMORRHAGE
- Bleeding is a common complication in **surgical** (2.5 to 3.5 % of 100-120 million major surgeries every year in the 7MM) and **trauma patients** (50% deaths occurring within 24 h).

STANDARD OF CARE
- Lysine analogs (indirect inhibitors of fibrinolysis), such as **tranexamic acid** (TXA) reduces surgical bleeding and blood transfusion by about one third.
- **Aprotinin** (direct inhibitor of fibrinolysis) - withdrawn in 2008 due to cardiovascular side effects and increased mortality (BART study). *EMA recommendation (2012), suspension be lifted for a restricted range of indications*

SHORTCOMINGS
- Data suggest that TXA might be less effective than aprotinin in reducing blood loss.
- Allogenic transfusion risk is 23% increased in TXA when compared to Aprotinin.
- TXA side effects include seizures, renal impairment and thromboembolic complications

UNMET NEED
- Medical need for effective and safer agents to manage patients with major bleeding
- Intracranial hemorrhage (ICH); an important orphan indication
Antihemorrhagic Agents: Novel Approach

AIM

- Effective agents with impact on fibrinolytic function - *no involvement in hemostasis*
Antihemorrhagic Agents: Novel Approach

AIM
- Effective agents with impact on fibrinolytic function - *no involvement in hemostasis*

APPROACH
- Target identification from array analyses (Affymetrix®) – human cells: **MMP3 & MMP10**
 - MMP10 knock-out mice show the desired biological response
 - MMP10 *hMAb* shows the desired *in-vitro* functional response
 - Pharmacological tool compound identified (dual inhibitor: MMP10 & MMP3); PoC for *in-vivo* validation

- Knowledge based *de-novo* design, and synthesis
 - Workflow towards Lead ID
 - Synthesis
 - *In-vitro* binding assay
 - *In-vitro* functional assay; (Thromboelastometry) **decision point**
 - ADME profiling
 - Toxicology (Anatomopathological study @ 10x efficacious dose)
 - *In-vivo* efficacy model (tail bleeding)

cima

Novel Antifibrinolytic Agents

XIV Encuentro de Cooperación FarmaIndustria
Madrid, November 2015
Hit to Lead: *In-vitro* binding assay

- 112 new proprietary compounds synthesized; all diversity points explored
- Biochemical assays vs MMP10 & MMP3
Lead ID: *In-vitro* functional assay

- 112 new proprietary compounds synthesized; all diversity points explored
- Biochemical assays vs MMP10 & MMP3
Optimized Lead: CM-352

- Multifactorial optimization process led to CM-352
- *In-Vitro* efficacy model: Thromboelastometry (*human whole blood*)

CM-352 is able to reduce by 50% lysis time at sub-nanomolar concentration.
<table>
<thead>
<tr>
<th>Efficacy</th>
<th>Binding affinities (MMP10 & MMP3):</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Delay in Lysis Time (functional assay in human blood)</td>
</tr>
<tr>
<td></td>
<td>IC$_{50}$: 12nM & 15nM</td>
</tr>
<tr>
<td></td>
<td>EC$_{50}$: 0.7nM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ADME</th>
<th>P450s: 1A2, 2C19, 2C9, 2D6, 3A4 (<50% @ 10µM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>hPXR (EC$_{50}$ > 100µM)</td>
</tr>
<tr>
<td></td>
<td>Plasma Protein Binding (% unbound)</td>
</tr>
<tr>
<td></td>
<td>Solubility (>100 µg/mL)</td>
</tr>
<tr>
<td></td>
<td>Caco-2 (Pe 10$^{-6}$ in cm/s) & Efflux Ratio</td>
</tr>
<tr>
<td></td>
<td>Liver Microsomal Stability (t$_{1/2}$ estimation) in minutes</td>
</tr>
<tr>
<td></td>
<td>S9 Stability (t$_{1/2}$ estimation) in minutes</td>
</tr>
<tr>
<td></td>
<td>>145(H), >145(M), >145(R)</td>
</tr>
<tr>
<td></td>
<td>hERG binding (IC$_{50}$ >100 µM)</td>
</tr>
<tr>
<td></td>
<td>Patch Clamp (IC$_{50}$ >30 µM)</td>
</tr>
<tr>
<td></td>
<td>Mini Ames (in 2 strains)</td>
</tr>
<tr>
<td></td>
<td>THLE & PBMC (LC$_{50}$ > 100µM)</td>
</tr>
<tr>
<td></td>
<td>Anatomopathological analysis (@ 10 mg/kg)</td>
</tr>
<tr>
<td></td>
<td>Acute Toxicity</td>
</tr>
<tr>
<td></td>
<td>LD$_{50}$: 100 mg/Kg</td>
</tr>
<tr>
<td></td>
<td>No alteration observed (lung, brain, kidney & liver)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Toxicity</th>
<th>Pharmacokinetics (Vss, t${1/2}$ & C${max}$) @ 1 mg/Kg in mice (i.v.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Brain tissue/Plasma Ratio @ T$_{max}$ from 1 mg/Kg in mice (i.v.)</td>
</tr>
<tr>
<td></td>
<td>0.94 (L/Kg), 1.4 (h), 3.3 (µM)</td>
</tr>
<tr>
<td></td>
<td>1.1 % (34 nM)</td>
</tr>
</tbody>
</table>

| **PK** | CM-352 |
Lead Profiling (II)

MoA & off-target Selectivity

<table>
<thead>
<tr>
<th>Isoforms selectivity</th>
<th>Binding affinities vs 9 additional MMP isoforms (>50% @ 10μM)</th>
<th>All isoforms (in fact, >70%)</th>
</tr>
</thead>
</table>

MoA & Hemost. & Fibrin.:

<table>
<thead>
<tr>
<th></th>
<th>Binding affinities vs 89 add. targets bearing metal binding sites (≤ 50% @ 10μM)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fibrinolysis</td>
<td>tPA, uPA, plasmin, PAI1, … @ 10μM</td>
<td>Inactive*</td>
</tr>
<tr>
<td>Primary Hemostasis</td>
<td>Platelet aggregation @ 10μM</td>
<td>Inactive*</td>
</tr>
<tr>
<td>Sec. Hemostasis</td>
<td>KLK-1, Factor X, … @ 10μM</td>
<td>Inactive*</td>
</tr>
<tr>
<td>Additional</td>
<td>Fibrinogen, TAFI, APC, … @ 10μM</td>
<td>Inactive*</td>
</tr>
</tbody>
</table>

Off-Target

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Binding affinities vs 89 add. targets bearing metal binding sites (≤ 50% @ 10μM)</td>
<td>✓</td>
</tr>
</tbody>
</table>

Conclusion: Effective antifibrinolytic agent; and, no impact on hemostasis

No impact on hemostatic parameters; and, no coagulopathy induction
Optimized Lead: CM-352

- **In-Vivo efficacy** model: Hyperfibrinolytic Tail Bleeding

\[\text{CM-352 reduces bleeding time by } >89\% \text{ at } 10\mu g/kg \text{ in hyperfibrinolytic induced conditions} \]
Optimized Lead: CM-352

- \textit{In-Vivo} efficacy model: Hepatectomy Bleeding

Only CM-352 is effective at reducing blood loss in an aggressive bleeding model.
Optimized Lead: CM-352

- **In-Vivo efficacy model**: Intracranial hemorrhage model – an important unmet need

CM-352 is effective at reducing hematoma and lesion volume in intracranial hemorrhage.

- **Magnetic Resonance Imaging (MRI)**
 - Hematoma volume:
 - i. ~30% reduction in 3 hours
 - ii. ~45% reduction in 24 hours

- **Neurological recovery**
 - Bederson scale
 - Baseline
 - 24 h
 - day 14

CM-352 is effective at reducing hematoma and lesion volume in intracranial hemorrhage.
Optimized Lead: CM-352

- **In-Vivo efficacy** model: **Antidote for Rivaroxaban** *(new generation of anticoagulants)*

CM-352 is effective at reducing bleeding time after Rivaroxaban treatment

Where DOAC means new generation of anticoagulants: Dabigatran and Rivaroxaban
Small Molecules as novel antifibrinolytic agents

AIM
- Effective agents with impact on fibrinolytic function - no involvement in hemostasis

APPROACH

<table>
<thead>
<tr>
<th>Target ID</th>
<th>Target Validation</th>
<th>Hit ID</th>
<th>Lead Optimization</th>
<th>Lead Prioritization</th>
</tr>
</thead>
<tbody>
<tr>
<td>MMP3 & MMP10</td>
<td>MMP10 knock-out mice show the desired biological response</td>
<td>MMP10 hMAb shows the desired in-vitro functional response</td>
<td>Pharmacological tool compound identified (dual inhibitor: MMP10 & MMP3); PoC for in-vivo validation</td>
<td></td>
</tr>
</tbody>
</table>

- Knowledge based de-novo design, and synthesis
- Workflow towards Lead ID
 - Synthesis
 - In-vitro binding assay
 - In-vitro functional assay; (Thromboelastometry) decision point
 - ADME profiling
 - Toxicology (Anatomopathological study @ 10x efficacious dose)
 - In-vivo efficacy model (tail bleeding)

ACHIEVEMENT
- Proprietary chemical series, IP – patent applications filed: WO2014012964 & WO2015104343
- Preclinical Candidate, CM-352, showing optimal profiling:
 - Efficacy (4 in-vivo models), ADME, cardiovascular safety, Toxicity, PK, off-target selectivity, ….
• Critical point is currently **on-going, looking for investment** to move to:

 i.- IMPD-enabling studies *(based on EMA feedback)*

 ii.- Phase I
Outline

• Institution: CIMA

• Project

• Partnering Opportunities
Value proposition

- Proprietary small molecules with in vivo proof of concept; e.g. optimized Lead Compound, CM-352:
 - ~4 times more efficacious at doses up to 30,000 times lower than TXA.
 - ~4 times more efficacious at doses up to 1,000 times lower than Aprotinin.
- Efficacious in aggressive bleeding model (hepatectomy). Aprotinin and TXA do not stop bleeding.
- Efficacious in ICH model (subarachnoid hemorrhage) → orphan indication (speeding up the process)
- Efficacious as antidote for new generation anticoagulant agent (Rivaroxaban; targeting FXa)
- Have no impact on hemostasis
- No thrombus formation
- Optimal ADME, off-target selectivity and PK profile; e.g. $t_{1/2}$ is 1.4 hours (optimal for acute treatment)
Efficacy And Safety

- Proprietary small molecules with in vivo proof of concept; e.g. optimized Lead Compound, CM-352:
 - ~4 times more efficacious at doses up to 30,000 times lower than TXA.
 - ~4 times more efficacious at doses up to 1,000 times lower than Aprotinin.
- Efficacious in aggressive bleeding model (hepatectomy). Aprotinin and TXA do not stop bleeding.
- Efficacious in ICH model (subarachnoid hemorrhage) → orphan indication (speeding up the process)
- Efficacious as antidote for new generation anticoagulant agent (Rivaroxaban; targeting FXa)
- Have no impact on hemostasis
- No thrombus formation
- Optimal ADME, off-target selectivity and PK profile; e.g. t_{1/2} is 1.4 hours (optimal for acute treatment)

Differentiation And Market

- Novel MoA and novel “Markush” formulas
- Potential to recover Aprotinin market niche ($600 Million) – major surgery
- Life plan also involves: first-aid/trauma & ICH (orphan indication to speed up the process)
Value proposition

- Proprietary small molecules with in vivo proof of concept; e.g. optimized Lead Compound, CM-352:
 - ~4 times more efficacious at doses up to 30,000 times lower than TXA.
 - ~4 times more efficacious at doses up to 1,000 times lower than Aprotinin.
 - Efficacious in aggressive bleeding model (hepatectomy). Aprotinin and TXA do not stop bleeding.
 - Efficacious in ICH model (subarachnoid hemorrhage) → orphan indication (speeding up the process)
 - Efficacious as antidote for new generation anticoagulant agent (Rivaroxaban; targeting FXa)

- Have no impact on hemostasis
- No thrombus formation
- Optimal ADME, off-target selectivity and PK profile; e.g. t1/2 is 1.4 hours (optimal for acute treatment)

- Novel MoA and novel “Markush” formulas
- Potential to recover Aprotinin market niche ($600 Million) – major surgery
- Life plan also involves: first-aid/trauma & ICH (orphan indication to speed up the process)

- Project at preclinical stage with follow-on products:
 - Target-based approach
 - Phenotypic-based discovery

- Time to IND estimated ~12 to 18 months
Efficacy And Safety

- Proprietary small molecules with in vivo proof of concept; e.g. optimized Lead Compound, CM-352:
 - ~4 times more efficacious at doses up to 30,000 times lower than TXA.
 - ~4 times more efficacious at doses up to 1,000 times lower than Aprotinin.
- Efficacious in aggressive bleeding model (hepatectomy). Aprotinin and TXA do not stop bleeding.
- Efficacious in ICH model (subarachnoid hemorrhage) ➔ orphan indication (speeding up the process)
- Efficacious as antidote for new generation anticoagulant agent (Rivaroxaban; targeting FXa)
- Have no impact on hemostasis
- No thrombus formation
- Optimal ADME, off-target selectivity and PK profile; e.g. t1/2 is 1.4 hours (optimal for acute treatment)

Differentiation And Market

- Novel MoA and novel “Markush” formulas
- Potential to recover Aprotinin market niche ($600 Million) – major surgery
- Life plan also involves: first-aid/trauma & ICH (orphan indication to speed up the process)

Development

- Project at preclinical stage with follow-on products:
 - Target-based approach
 - Phenotypic-based discovery
- Time to IND estimated ~12 to 18 months

IP

- Novel strategy. Strong IP position, 3 patents, available for Worldwide licensing or territory-based
 - 2 patents cover different novel “Markush” formulas (WO2014012964 and WO2015104343)
 - 1 patent claims known MMP inhibitors – acute treatment (WO2015107139)
Efficacy And Safety

- Proprietary small molecules with in vivo proof of concept; e.g. optimized Lead Compound, CM-352:
 - ~4 times more efficacious at doses up to 30,000 times lower than TXA.
 - ~4 times more efficacious at doses up to 1,000 times lower than Aprotinin.
- Efficacious in aggressive bleeding model (hepatectomy). Aprotinin and TXA do not stop bleeding.
- Efficacious in ICH model (subarachnoid hemorrhage) → orphan indication (speeding up the process)
- Efficacious as antidote for new generation anticoagulant agent (Rivaroxaban; targeting FXa)
- Have no impact on hemostasis
- No thrombus formation
- Optimal ADME, off-target selectivity and PK profile; e.g. t1/2 is 1.4 hours (optimal for acute treatment)

Differentiation And Market

- Novel MoA and novel “Markush” formulas
- Potential to recover Aprotinin market niche ($600 Million) – major surgery
- Life plan also involves: first-aid/trauma & ICH (orphan indication to speed up the process)

Development

- Project at preclinical stage with follow-on products:
 - Target-based approach
 - Phenotypic-based discovery
- Time to IND estimated ~12 to 18 months

IP

- Novel strategy. Strong IP position, 3 patents, available for Worldwide licensing or territory-based
 - 2 patents cover different novel “Markush” formulas (WO2014012964 and WO2015104343)
 - 1 patent claims known MMP inhibitors – acute treatment (WO2015107139)

CM-352 first line of therapy to treat blood loss in major surgery, trauma and first-aid as well as ICH
• Partnering

Two scenarios are initially envisioned:

1. - Product license (IP)

2. - Stepwise research investment & first option (right of first refusal)
Acknowledgements

Jesús Hernández, PhD

Atherothrombosis Unit

Hospital Clinico Universitario, Santiago de Compostela
- T. Sobrino, PhD
- J. Castillo, PhD

Small Molecule Discovery Platform

M. Musheng, PhD
W. Wei, PhD
B. Teng, PhD
Thank you!!

Atherosclerosis Lab
Jose Antonio Páramo, MD, PhD
japaramo@unav.es

Molecular Therapeutics Program
Julen Oyarzabal, PhD
julenoyarzabal@unav.es