Blood biomarkers for the early diagnosis of dementia with Lewy bodies
Content

1. The Institution

2. The Product
 a) Target Indications
 b) The biomarkers
 c) Differential features facing the market
 d) Current status of development
 e) IPR protection
 f) Pitfalls & Risks to be considered

3. Partnering Opportunities
The Health Sciences Research Institute Germans Trias i Pujol (IGTP) is a CERCA biomedical research centre on the Can Ruti Campus, around the Germans Trias i Pujol Hospital in Badalona just outside Barcelona. As accredited centre of excellence for Medical Research accredited by the "Instituto Carlos III", the IGTP coordinates research and innovation activities on the campus as well as providing technical platforms and know-how to the scientific and medical community. The Can Ruti Campus is home to diverse research centres, including several which are outstanding in their fields, a teaching unit of the Autonomous University of Barcelona and various spin-offs.
The Research Group

Patología estructural y molecular; Director: Prof A Ariza

Área de cáncer
- Tumores cutáneos
- Linfomas
- Tumores gastro-intestinales

Área de neurociencias
- Neuro-oncología
- Neuro-degeneración
- Neuro-infección

K Beyer, PhD
A Gámez, MSc
L Pérez, MSc
J Canet, MSc

Transcriptómica y genómica de las sinucleinopatías

Identificación de biomarcadores diagnósticos
2. The Product: a) Target Indications

DEMENTIAS

Alzheimer’s disease (AD)
45-50%
- polygenic / multi-factorial, heterogeneous disease

Dementia with Lewy bodies (DLB)
25-30%

other dementias

Prevalence in the Spanish population

<table>
<thead>
<tr>
<th>Age</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>0</td>
</tr>
<tr>
<td>65-69</td>
<td>10</td>
</tr>
<tr>
<td>85-89</td>
<td>20</td>
</tr>
<tr>
<td>95-99</td>
<td>30</td>
</tr>
</tbody>
</table>
SYNUCLEINOPATHIES

= group of three diseases:
1. Parkinson’s disease (PD)
2. DLB
3. Multisystem atrophy (MSA)

Primary pathological mechanism
→ oligomerization y aggregation of alpha-synuclein

Alpha-synuclein → formation of intra-neuronal inclusion bodies
2. The Product: a) Target Indications

AD / DLB / PD

→ neuropathological overlap:

AD

DLB

PD
AD / DLB / PD clinical overlap:
→ DLB misdiagnosis
→ wrong treatment
→ adverse reaction

2. The Product: a) Target Indications
Genetic heterogeneity:
- Subgroups
- different molecular mechanisms
→ one pathology

2. The Product: a) Target Indications

Venn diagram showing:
- AD
- DLB
- PDD
- PD

AD and DLB overlap, indicating shared characteristics.

PDD overlaps with PD, suggesting a subset relationship.

One pathology encompasses all conditions.
Main question:

HOW TO DIAGNOSE DLB CORRECTLY?

DLB = heterogeneous disease → How to diagnose the different subgroups?
2. The Product: b) The biomarkers

Genetic biomarkers for the early diagnosis of DLB

Biomarker 1

Analysis of relative expression of 5 Lewy body disease-related transcripts in blood of DLB patients in comparison with healthy controls.

- PAX-blood RNA tubes
- RNA extraction with QIAcube
- real-time PCR with SybrGreen
- beta-actin (ACTB) and porphobilinogen deaminase (PBGD)
- $\Delta\Delta$Ct method
2. The Product: b) The biomarkers

Genetic biomarkers for the early diagnosis of DLB

Biomarker 1

DLB patients divided by disease duration from onset
Genetic biomarker to monitor the progression of Lewy body disease

2. The Product: b) The biomarkers

Biomarker 1
2. The Product: b) The biomarkers

Genetic biomarkers for the early diagnosis of DLB

Biomarker 2

Analysis of 5 polymorphisms within the regulatory region of a Lewy body disease-related gene.

• DNA extraction from blood (QIAcube)
• Fragment analysis
• Sequencing
• Obtaining of the genotype combination
2010: Drastic beta-synuclein diminution in the cerebral cortex defines a molecular subgroup of DLB

Characteristics:
- fast progression and short duration of DLB
- clinical presentation as DLB but not as PDD
- pure Lewy pathology in the brain

Identification: of the molecular mechanism as a possible therapeutic target

NO determination: the associated peripheral marker to this mechanism for the pre-mortem and early identification of affected patients
2. The Product: b) The biomarkers

Genetic biomarkers for the early diagnosis of DLB

Biomarker 2

Distribution of the genetic biomarker

Beyer et al., Brain 2010
ADVANTAGES

- The use of this genetic biomarker will permit to identify those patients with DLB that belong to a subgroup with known molecular changes in the brain.
- The potential to personalize the diagnosis and possibly also treatment is becoming a promising strategy for clinical use.
- The facility of standardization and relative low-cost of analysis are key characteristics for the use of the biomarker in clinics.
2. The Product:
c) Differential features facing the market

• urgent need of diagnostic biomarkers for DLB
 - to achieve a correct diagnosis
 - facing the ageing of the population

• current diagnostic tools:
 - purely clinical
 - radiodiagnostic tools (DATscan = expensive and invasive)

• no genetic markers have been identified so far
2. The Product:
d) Current status of development

1st phase
Post mortem brain samples (n=120)

Biomarker 2
- Sensitivity: >> 85%
- Specificity: >> 93%

2nd phase
Blood samples from clinically diagnosed patients (n=550 DNA; n=120 RNA)

Biomarker 1
- Sensitivity: >> 83%
- Specificity: >> 90%

3rd phase
Multicenter clinical study in blood samples (n=1200 DNA, n=300 RNA)

* phase refers to stage of biomarker development
2. The Product: e) IPR protection

Two Prioritary European patents applications filed
2. The Product: f) Pitfalls & Risks to be considered

Biomarker 1
- to be validated vs AD
- to be validated in other populations

Biomarker 2
- to check the biomarker in a cohort with clinical diagnosis:
 - vs control subjects
 - vs AD patients
- to check the biomarker in a multicenter/international study
3. Partnering Opportunities

We are open to any kind of partnership with pharmaceutical and biotech industry that lead us to achieve final development including validation in step 3 for “Biomarker 1”, and validation in steps 2 and 3 for “Biomarker 2” and/or for licensing out the biomarkers.

*phase refers to stage of biomarker development