Medicina Personalizada en Cáncer: Perspectiva Bioinformática

Fátima Al-Shahrour, PhD
Bioinformatics Unit - Spanish National Cancer Research Centre (CNIO)
https://bioinformatics.cnio.es/
Follow us: @BU_CNIO
Precision medicine (PM) workflow
The Goal of Cancer Personalized Medicine

- To fulfill the promise of delivering the right dose for the right indication to the right patient at the right time.

- Personalized medicine uses an individual's genetic profile and individual information to guide decisions made in regard to the prevention, diagnosis, and treatment of cancer.
Cancer Genome Landscape

Tumors have **thousands** of molecular alterations and their frequency is highly **heterogeneous**.
Long-tail of potentially clinically relevant alterations in cancer genes

It is important to identify and understand the molecular landscape **for each patient** beyond the tumoral type.
Genetic Biomarkers and new targeted therapies

Cancer therapeutic options are still very limited and most patients acquire resistance to the treatment.

In 2006: eligible, 5.09%
In 2018: eligible, 8.33%
In 2006: benefit, 0.70%
In 2018: benefit, 4.90%

Marquart J et al. JAMA oncol. 2018
Integrative Genomics: Tools Needed for Prediction and Personalized Care

- Patient’s tumor genomic data
- Experimental data in vitro and in vivo (xenografts & GEMM)
- Clinical data
- Literature and Biological Databases

Bioinformatic analyses + Data warehouse/Framework

- Variant prediction
- Gene/protein function prediction
- Pharmacogenomics: Druggable targets

Application → Clinical interpretation → Personalized Medicine
Knowledge-driven hypothesis generation for cancer treatment
CNIO Bioinformatics Unit approach

Target: TUMOR IMMUNOCONTEXTURE

\textbf{PANDRUGS}

\textit{In silico} prescription based on genomic alterations

\textbf{Dreimt}

\textit{In silico} prescription based on immune cell populations

\textbf{vulcanSpot}

\textit{In silico} prescription based on genetic dependencies
PanDrugs: in silico drug prescription http://www.pandrugs.org

A tool to guide the selection of therapies from the results of genome-wide studies in cancer disease.

Welcome to PANDRUGS
A novel method for prioritizing therapies using individual genomic data

What is PanDrugs?
PanDrugs provides a bioinformatics platform to prioritize anticancer drug treatments according to individual genomic data. PanDrugs current version integrates data from 24 primary sources and supports 56,287 drug-target associations obtained from 4,804 genes and 9,092 unique compounds.

Data input: standard VCF file, RNAK file, gene lists and drug query.

Please note the PanDrugs terminology for druggable genes:
I. Direct targets: Genes that contribute to disease phenotype and can be directly targeted by a drug (e.g. BRAF is a direct target for vemurafenib).
II. Biomarkers: Genes showing a genetic status associated with drug response, which protein product is not the drug target itself (e.g. BRCA-mutated cancers responding to PARP inhibitors).
III. Pathway members: Genes located downstream in the biological pathway of a given undruggable gene (e.g. patients with mutations in TSC1/2 respond to a downstream inhibition of the mTOR pathway).

Aim 1: Integration Pipeline DNA-Therapies

DNA-Seq (WES, targeted panels)

RNA-Seq

Normal DNA (Blood)

Hospital

Translational Settings

Clinical Settings

Aim 2: Integration Pipeline RNA-Therapies

Aim 3: Integration ELIXIR platform

Aim 4: TRAINING

Hospital

Research Settings

Patient Genomic Report

IMPLEMENTATION

http://bioinfo.cnio.es/nextpresso/

http://rubioseq.bioinfo.cnio.es/

http://www.pandrugs.org/

http://www.pandrugs.org/
PM requires coordination across multiple stakeholders

Genomics patient’s report

Efficacy cost and time (*real time*)

Technological Area
- Data generation (omics platforms)
- External or Federated repository
- Secure data storage and privacy.
- Computational analysis
- Visualization and access

Clinical Area
- Samples storage
- Electronic Health records
- Data manager
- Data sharing

Human Resources Area
- Multidisciplinary teams
- Clinical Bioinformatician
- Education in genetics and Bioinformatics
- Expert clinicians

Genomics patient’s report

Efficacy cost and time (*real time*)

Technological Area
- Data generation (omics platforms)
- External or Federated repository
- Secure data storage and privacy.
- Computational analysis
- Visualization and access

Clinical Area
- Samples storage
- Electronic Health records
- Data manager
- Data sharing

Human Resources Area
- Multidisciplinary teams
- Clinical Bioinformatician
- Education in genetics and Bioinformatics
- Expert clinicians
1. Infrastructure and technological area

ELIXIR data infrastructure for Europe’s life science research sector

ELIXIR Nodes build local bioinformatics capacity throughout Europe

ELIXIR Nodes build on national strengths and priorities

[Visit ELIXIR website](https://www.elixir-europe.org/)
2. Clinical Area

Prospective and retrospective cohorts, clinical trials, basket trials, umbrella trials, 200,000 patients in 2024

- Demographic data
- Environmental factors
- Genomic data
- Clinical data
- Treatments
- Evolution

Correlation between genomic data (biology) and disease evolution

Knowledge will come from the aggregation of the diversity (diseases, ethnicities, geography, exposures, treatment… And Sharing!

https://icgcmed.org/
Courtesy Fabien Calvo
Clinical bioinformatics teams require multidisciplinary experts to perform regular tasks.

Multidisciplinary team: Training
2ª edición del Máster en Bioinformática Aplicada a Medicina Personalizada y Salud (Curso 2018-2019), organizado por la Escuela Nacional de Sanidad – ISCIII. Colabora el Centro Nacional de Investigaciones Oncológicas y Barcelona Supercomputing Center.

Abierto el plazo de inscripciones Curso 2019-2020.
Conclusions

• More genomic efforts should define markers to predict response and outcome (cure!) and prevention.

• **Clinical – Pharma actions:**
 – Genomic-driven clinical trials recruitment are needed.
 – Retrospective studies will allow the identification of new predictive biomarkers of drug response.
 – **Sharing data** (molecular and clinical) is the key.

• Guarantee the implementation of **omics platforms** in the National Health System network.

• High-performance **computing infrastructures**.

• **Training multidisciplinary teams.**
Thanks and…

Please SUPPORT CANCER RESEARCH

ONCONET-SUDOE Workshop on Innovative IT for healthcare

“The patient journey: Information Technologies focused on the cancer patient”

3rd- 4th April, 2019
CNIO Auditorium. C/ Melchor Fernández Almagro 3, Madrid, Spain

https://bioinformatics.cnio.es/
Follow us: @BU_CNIO